Table S1. Rare genetic conditions for which the KD is contraindicated

Clinical Snapshot

Why KD is contraindicated?

These rare mutations lead to defects in ketone production (ketogenesis) or breakdown (ketolysis) that impair the body's ability to use ketones as fuel. **Clinical signs and symptoms** These disorders manifest with acute episodes of metabolic decompensation during any condition that causes hypoglycemia and subsequent increase in increase the body's demand for ketone bodies and fatty acids (e.g. carbohydrate restriction or prolonged fasting, exercise, and times of physiologic stress, such as illness, sleep deprivation, or extreme weather). These episodes present with abnormal levels of ketones and/or glucose in the blood (hypoketotic hypoglycemia or ketoacidosis), metabolic acidosis, and toxic effects on the brain leading to vomiting, dehydration, difficulty breathing, lethargy, seizures and coma.

Therapeutic considerations

sep Carbohydrates sep

While affected individuals should consume carbohydrates as part of their diets, especially before and during exercise, those who over-consume carbohydrates in hope of preventing acute attacks may be at higher risk of developing obesity and associated disorders with no proven benefit for the underling metabolic issue.

Dietary fatty acids and MCT supplementation for FAODs

Long-chain FAODs (i.e. deficiency of CPT2, CACT, VLCAD, and LCHAD) may benefit from reduction of dietary long-chain fatty acids and supplementation with MCT (15%–18% of total calories) — which can bypass the block in long-chain FAO and improve exercise tolerance when administered before exercise (0.5 g/kg lean body weight) [PMID: 21763168, PMID: 22030098]. For LCHAD patients, MCT preparations with a higher ratio of decanoate to octanoate may be most effective to reduce the accumulation of potentially toxic long-chain 3-hydroxy-fatty acid [PMID: 12621125]. Infant formula should have reduced content of long-chain fatty acids plus MCT with continuous feeds for CACT neonates or every 2–3 hours during the day and continuous at night.

Condition	Prevalence	Gene & best characterized mutations	Enzyme function & clinical signs	BHB levels	Blood Glucose
Mitochondrial HMG-CoA synthase 2 deficiency	< 20 patients reported worldwide	HMGCS2 rs137852636 rs137852637 rs137852638 rs137852639 rs28937320 rs137852640	Mitochondrial HMG-CoA synthase 2 catalyzes the condensation of acetyl-CoA and acetoacetyl-CoA to form HMG-CoA in the first steps of ketogenesis in the liver. Patients are generally asymptomatic unless during fasting or infection, which makes the diagnosis very difficultClinical manifestations include severe hypoketotic hypoglycemia, encephalopathy, and hepatomegaly. Genetic testing is required to confirm the diagnosis.	Low	Low
HMG-CoA lyase deficiency	About 100 cases reported in Saudi Arabia, Portugal, Spain	HMGCL	HMG-CoA lyase catalyzes the formation of acetoacetate from HMG-CoA within the mitochondria in the liver and is required for the catabolism of the amino acid leucine in dietary proteins.	Low	Low

ucherency		rs386134217 rs386134217 rs72552735 rs121908888	that transports carnitine into cells in a sodium-dependent manner. Cells need carnitine to bring fatty acids into mitochondria to produce energy in form		
Primary carnitine deficiency	(1:200,000)	characterized mutations SLC22A5	Solute Carrier Family 22, Member 5 (SLC22A5) is a transmembrane protein	levels Low	Glucose Low
Condition	Prevalence	Gene & best	Enzyme function & clinical signs	BHB	Blood
Fatty acid oxidation	disorders (FAODe)		first ten days of life.		
			improves if the disease is diagnosed in the		
			seizures. The clinical outcome greatly		
			breathing, lethargy leading to coma, and		
			resulting toxic encephalopathy can lead to vomiting, dehydration, difficulty		
			particularly the nervous system. The		
			damage the body's tissues and organs,		
			metabolic acidosis due to buildup of organic acids in the blood, which can		
		rs779565865	present hyperketotic hypoglycemia and		
		rs120074148	protein-rich foods. Affected children		
		rs120074147	fasting, infection, or increased intake of		
		rs120074145 rs120074146	attacks between the ages of 6 months and 24 months, which are often triggered by		
		rs387906283	symptoms manifest during ketoacidotic		
		rs387906282	amino acid isoleucine.		
		rs120074144	ketogenesis, and helps break down the		
		rs120074142	in reverse, which is the first step in		
		rs1280110907 rs120074142	used to produce energy. In the liver, ACAT1 carries out this chemical reaction		
		rs1131691567	molecules of acetyl-CoAa, which can be		
		rs145229472	acetoacetyl-CoA is broken down into two		
		rs727503796	tissues. In this reversible reaction		
		rs120074141	last step of ketolysis in extra-hepatic		
deficiency	2 1	rs120074140	beta-ketothiolase or T2, carries out the	very high	111611 01 100
Beta-ketothiolase	1 in 1 million	ACATI	Mitochondrial ACAT1, also known as	High/	High or low
			ketonemia and ketonuria.		
			periods, those with more severe enzymatic defects can present persistent		
			asymptomatic and have non-ketotic		
			"mild" SCOT mutations may be		
			illness or stress. While patients with		
			ketosis and attacks of ketoacidosis during		
		rs121909303	the liver. This can result in permanent		
		rs121909302	inability to break down ketones outside		
		rs75134564 rs121909301	CoA to acetoacetate. SeptemImpaired function of SCOT/OXCT1 results in		
		rs267606930	of coenzyme A (CoA) from succinyl-		
		rs121909300	catalyzing the reversible transfer		
	reported	rs121909299	extrahepatic ketone body catabolism by	very high	
SCOT deficiency	< 35 cases	OXCT1	SCOT/OXCT1 plays a central role in	High/	High or low
			and death.		
			breathing problems, convulsions, coma,		
			untreated, the disorder can lead to		
			vomiting, seizures, and lethargy. If		
			buildup and metabolic acidosis due to defective breakdown of leucine,		
			impaired ketone production, organic acid		

		rs121908890 rs68018207 rs121908891 rs121908892 rs121908893 rs267607054 rs267607053 rs267607052	gene result in an absent or dysfunctional SLC22A5 transporter leading to low intracellular and blood levels and urinary loss of carnitine. This results in reduced energy production within mitochondria, muscle weakness and hypoglycemia. Fatty acids may also build up in cells and damage the liver, heart, and muscles leading to hypertrophic cardiomyopathy, congestive heart failure, arrhythmias, sudden death, hypotonia, muscle weakness. Symptoms typically appear during infancy or early childhood but some people are asymptomatic.		
CPT1A deficiency	(1:50-100,000)	CPT1A rs80356778 rs80356778 rs80356790 rs80356790 rs80356791 rs80356798 rs1169875761 rs28936374 rs80356780 rs80356779	The CPT1A enzyme attaches carnitine to long-chain fatty acids to form acylcarnitines that can cross the inner membrane of mitochondria. Once these fatty acids are inside the mitochondria, they can be metabolized to produce energy after the remotion of carnitine. Mutations in the CPT1A gene reduce or eliminate the activity of the CPT1A enzyme (residual enzyme activity between 0 and 10%). As a result, carnitine is not attached to long-chain fatty acids, which cannot enter mitochondria and be converted into energy. This leads to low levels of ketones and glucose in blood (hypoketotic hypoglycemia). Fatty acids may also build up in cells and damage the liver, heart, and brain leading to cardiomyopathy (infantile form), congestive heart failure, muscle weakness, rhabdomyolysis, and exercise intolerance.	Low	Low
CPT2 deficiency	Myopathic form: >300 cases; severe infantile form (hepatocardiomu scular): ~30 families; lethal neonatal form: ~18 families.	CPT2 rs74315293 rs74315294 rs28936375 rs28936673 rs28936674 rs74315295 rs74315296 rs397509431 rs74315297 rs74315298 rs74315299 rs74315291 rs74315291 rs74315291 rs74315295 rs74315298 rs74315299 rs74315298 rs7431528 rs229291 rs1799821	The CPT2 enzyme removes carnitine from fatty acids that have entered the mitochondria (acylcarnitines) and adds coenzyme A to form acyl-CoA esters that can be broken down to produce energy. Mutations in the CPT2 gene reduce the activity of the CPT2 enzyme. As a result, long-chain fatty acids remain attached to carnitine as acylcarnitines and cannot be metabolized to produce energy. This leads to low levels of ketones and glucose in blood (hypoketotic hypoglycemia). Fatty acids and long- chain acylcarnitines may also build up in cells and damage the liver, heart, and muscles causing the other signs and symptoms of the disorder. Mutations that lead to extremely reduced enzyme activity typically cause the more severe forms of CPT II deficiency (a lethal neonatal form and a severe infantile hepatocardiomuscular form), while those that result in partially reduced enzyme	Low	Low

			activity usually lead to a less severe myopathic form of the disorder.		
CACT deficiency	~30 cases	SLC25A20	CACT transports long-chain fatty acids attached to carnitine (long-chain acylcarnitines) across the inner mitochondrial membrane as part of the carnitine shuttle system. Once acylcarnitines are inside the mitochondria, CACT removes carnitine, and transports it back out of mitochondria. CACT removes carnitine, and transports it back out of mitochondria. The second the second the SLC25A20 gene reduce the activity of the CACT protein. As a result, long-chain fatty acids cannot be transported into mitochondria and converted to energy. This leads to low levels of ketones and glucose in blood (hypoketotic hypoglycemia). Fatty acids and long- chain acylcarnitines may also build up in cells and damage the liver, heart, and muscles leading to hypertrophic cardiomyopathy, congestive heart failure, arrhythmias, and muscle damage. Because neonates depend largely on metabolism of long-chain fatty acids for energy, children with severe CACT deficiency have a poor prognosis, with most dying before 1 year of age. Some affected individuals have a less severe form of the condition and do not develop signs and symptoms until early childhood. These individuals are at risk for liver failure, nervous system	Low (neonatal, severe)	Low (neonatal, severe)
MCAD deficiency	(1:10-15,000)	ACADM rs77931234 rs77931234 rs121434274 rs121434275 rs121434276 rs121434277 rs864621963 rs121434278 rs121434278 rs121434280 rs121434281 rs121434281 rs121434283 rs121434283 rs74090726	damage, coma, and sudden death. MCAD is required to metabolize a group of fats called medium-chain fatty acids (MCTs). These fatty acids are found in foods and body fat and are produced when longer fatty acids are metabolized. MCAD catalyzes the initial reaction in the beta-oxidation of C4 to C12 straight- chain acyl-CoA esters. The Mutations in the ACADM gene reduce the activity of the MCAD protein. The resulting defect in the oxidation of MCTs to acetyl-CoA, which is used to produce ketones, can lead to hypoketotic hypoglycemia and lack of energy (lethargy), particularly during periods of fasting, although some individuals remain completely asymptomatic in absence of significant metabolic stress. MCTs or partially metabolized fatty acids may build up in tissues, damage the liver and brain, inhibit gluconeogenesis, and produce metabolic acidosis. This abnormal buildup causes the other signs and symptoms of MCAD deficiency. These include muscle weakness, exercise intolerance, rhabdomyolysis. Symptoms typically appear during infancy or early childhood.	Lack or only trace of urinary ketones	Low

			Possible complications include seizures, breathing difficulties, liver problems, brain damage, coma, and sudden death.		
VLCAD deficiency	(1:40-80,000)	ACADVL Frs113690956 rs118204014 rs387906249 rs387906251 rs387906252 rs118204015 rs2309689 rs118204016 rs387906253 rs28934585 rs118204017 rs118204018 rs118204016	VLCAD is bound to the inner mitochondrial membrane, where it catalyzes the first intramitochondrial step of the oxidation of long-chain fatty acids to acetyl-coA for the production of ketones and energy. Mutations in the ACADVL gene severely reduce or abolish the activity of the VLCAD enzyme. Like with other FAO disorders, this leads to hypoketotic hypoglycemia and lethargy, particularly during periods of fasting. Very long-chain fatty acids or partially metabolized fatty acids may build up in tissues and damage the heart, liver, and muscles leading to the other signs and symptoms of VLCAD deficiency. These include hypertrophic ardiomyopathy, arrhythmias, sudden death, muscle weakness, exercise intolerance, recurrent rhabdomyolysis, hypoketotic hypoglycemia, and "Reye-like" hepatic syndrome.	Lack or only trace of urinary ketones	Low or normal
SCAD deficiency	(1:35,000- 50,000)	ACADS rs121908003 rs121908004 rs57443665 rs28940872 rs1800556 rs1799958 rs121908005 rs387906308 rs28940874 rs121908006 rs28941773 rs28940875 rs147442301 rs387906950 rs387906951	Acyl-CoA dehydrogenase short chain (ACADS) or SCAD catalyzes the first steps in the oxidation of short-chain fatty acids (SCFA) to acetyl-CoA, which is used to produce ketone bodies that can supply the energy needs to compensate for the lack of adequate glucose in presence of hypoglycemia. SCAD deficiency is viewed as a biochemical phenotype rather than a disease, and some people never develop any symptoms. When SCAD activity is reduced, short-chain fatty acids are not converted into energy, whereas some ketone formation can still occur. This can lead to hypoglycemia with normal or elevated ketones, lethargy, and muscle weakness. Metabolic decompensation is typically triggered by low blood sugar (e.g. fasting or increased energy expenditure due to a catabolic state such as infection, surgery, fever, etc.), which mobilizes FFAs for oxidation to acetyl-CoA and production of ketone bodies. The accumulation of fatty acid intermediates can also inhibit gluconeogenesis leading to metabolic acidosis with elevated ketone levels and toxic effect on the liver. Two distinct clinical phenotypes have been identified. One type has been observed in infants with acute acidosis and muscle weakness (generalized); the other has been observed in middle-aged patients with chronic	High	Low

LCHAD	1: 62,000 (Finnish population, probably much lower in US)	HADHA	 Hydroxyacyl-Coa Dehydrogenase, Alpha Subunit (HADHA) is part of a protein complex called mitochondrial trifunctional protein, which is required to break down long-chain fatty acids. Four alpha subunits are produced from the HADHA gene, and four beta subunits are produced from the HADHB gene. Like other FAO disorders, LCHAD deficiency due to HADHA mutations leads to hypoketotic hypoglycemia and lethargy, particularly during periods of physiological stress such as fasting, illnesses, or weather extremes. Long-chain fatty acids or partially metabolized fatty acids may also build up in the liver, heart, muscles, and retina, inhibit gluconeogenesis, and produce metabolic (including lactic) acidosis. Affected infants and children usually present by 2 years of age. Muscle, particularly myocardium, requires a lot of energy and, therefore, becomes functionally impaired resulting in lethargy, hypotonia, cardiomyopathy, and risk of sudden death. Early-onset symptoms include cardiomyopathy, hypoglycemia, neuropathy, and pigmentary retinopathy. Later in childhood, people may experience muscle pain, breakdown of muscle tissue, and a loss of sensation in their arms and legs (peripheral 	Lack or only trace of urinary ketones	Low
Pyruvate carboxylase deficiency	1 in 250,000	PCF rs28940589 rs28940590 rs28940591 rs113994143 rs119103241 rs119103242	neuropathy). Pyruvate carboxylase is active in mitochondria, where it is involved in gluconeogenesis in kidneys, liver, and pancreas, where it helps regulate insulin secretion, lipogenesis in adipose tissue, and synthesis of neurotransmitters and myelin in the brain. In newborns, acetyl- CoA derived from pyruvate metabolism is an important source of energy. Fire Pyruvate carboxylase deficiency leads to defective production of glucose through gluconeogenesis and accumulation of lactic acid and ammonia, which damages organs and tissues. Ketone levels are increased, especially during any condition leading to hypoglycemia such as carbohydrate restriction and prolonged fasting. Myelin formation and neurotransmitter production are also impaired, contributing to the neurologic features of pyruvate carboxylase deficiency.	High	Low
ALAD deficiency porphyria	Only ~10 cases, all males, have been reported worldwide. This is in contrast to	ALAD sprs121912980 sprs121912981 rs1800435 rs121912982	ALAD combines two molecules of delta- aminolevulinic acid (ALA) to form porphobilinogen (PBG) for the production of heme. Heme is vital for all of the body's organs, although it is found	Not affected	Not affected

rs121912983 rs121912984 rs749066913	mostly in the blood, bone marrow, and liver. Hereditary ALAD deficiency is extremely rare whereas acquired forms due to enzymatic inhibition through	
	extremely rare whereas acquired forms	
rs749066913	, I	
	due to enzymatic inhibition through	
	heavy metal (e.g. lead) poisoning, are	
	more common. ALAD deficiency results	
	in build-up of toxic levels of ALA in the	
	body leading to acute attacks	
	characterized by abdominal pain,	
	vomiting, muscle weakness, seizures,	
	fever, and neurological symptoms such as	
	anxiety and hallucinations. These signs	
	and symptoms can be life-threatening,	
	especially if the muscles that control	
	breathing become paralyzed. Any	
	0 1 , ,	
	as prolonged fasting and very low	
	carbohydrate diets, can trigger acute	
	,	
	8	
		in build-up of toxic levels of ALA in the body leading to acute attacks characterized by abdominal pain, vomiting, muscle weakness, seizures, fever, and neurological symptoms such as anxiety and hallucinations. These signs and symptoms can be life-threatening, especially if the muscles that control breathing become paralyzed. Any condition leading to hypoglycemia such as prolonged fasting and very low

Abbreviations. SNP identification numbers (noted as "rs...") are the unique SNP identifiers from the NCBI dbSNP database. HMG-CoA: 3-hydroxy-3-methylglutaryl-CoA; SCOT: Succinyl-CoA:3-ketoacid CoA transferase; OXCT1: 3-oxoacid CoAtransferase 1; ACAT1: Acetyl-CoA acetyltransferase 1; FAOD: fatty acid oxidation disorders; FFAs free fatty acids; CPT1A: Carnitine palmitoyltransferase 1A; CPT2: carnitine palmitoyltransferase 2; CACT: carnitine-acylcarnitine translocase; MCAD: medium-chain acyl dehydrogenase; VLCAD: very long-chain acyl dehydrogenase deficiency; SCAD: short-chain acyl dehydrogenase; LCHAD: long-chain 3-hydroxyacyl-CoA deficiency; MCTs: medium-chain fatty acids; ALAD: Deltaaminolevulinic acid dehydratase; BHB: beta-hydroxybutyrate. Blood levels of BHB and glucose refer to those observed during metabolic decompensation unless otherwise stated.

Table S2. Rare genetic conditions for which KD may be indicated

Clinical Snapshot

Why KD is indicated?

KD is a first-line therapy in children with GLUT1-DS and PDCD, which impair the production of energy from glucose thus leading to alterations in brain development and function. In both conditions, KD provides ketones as an alternative fuel for the brain and the body thus producing significant improvements in neurological symptoms (motor function, seizures, cognitive performance).

KD can also ameliorate symptoms and laboratory parameters in other rare conditions such glycogen storage disease, disorders of mitochondrial energy supply, urea cycle, purine metabolism and amino acid metabolism, and drug resistant epilepsy. In glycogen storage disease, the reduction of blood insulin levels and use of ketones as an alternative energy source likely underlies the reduction in glycogen storage and improvements in exercise tolerance observed in patients treated with KD. In the other conditions, KD leads to reduction or elimination of seizures and improvement of brain function and neurological symptoms through complex yet not fully elucidated mechanisms [PMID: 18266755].

Clinical signs and symptoms

These conditions have different etiology and clinical presentation. Please see the "Enzyme function and clinical signs" column for further details.

Therapeutic considerations

Therapeutic ranges of BHB and utility of using exogenous ketone supplementation differ among these conditions. Please refer to the "KD benefits and case reports" column for further details.

Genetic conditions in which KD directly targets the underlying metabolic defect							
Condition	Prevalence	Gene & best characterized mutations	Enzyme function & clinical signs	Benefits of KD/exogenous ketones and case reports			
GLUT1 deficiency syndrome	1:90000 (Australia)	SLC2A1 rs80359829 rs80359828 rs80359828 rs80359822 rs80359816 rs121909739 rs121909740 rs80359812 rs267607060 rs267607061 rs80359818 rs202060209 rs267607059 rs387907312 rs387907313 rs397514564 rs13306758 rs398123069 rs864309514		KD is the first line therapy for GLUT1 deficiency. Ketone bodies bypass the GLUT1 defect and enter the brain by a monocarboxylic acid transporter (MCT1). Therapeutic ranges of blood ketones are 2-4 mM in presence of very low blood glucose levels (<40 mg/dL). Exogenous ketones have not been shown to provide additional benefits as adjunct therapy, possibly because MCT1 is already saturated at physiological levels of blood ketones typically induced by a ketogeni diet (1-3 mM) [PMID: 28510035, PMID: 25415176, PMID; 12555938; PMID 16217704; PMID 15622525; PMID: 25914049. Review: PMID 19304421].			

PDC deficiency	Rare, ~500	PDHA1 (80% of	PDC converts pyruvate, which is	KD is the first line therapy for PDC deficiency
(PDCD)	reported cases,	cases)	formed from the breakdown of	[PMID: 30407699; PMID: 824610; PMID:
	likely under-	rs606231184	carbohydrates to acetyl-CoA. PDC is	12621116]. Due to its low-carbohydrate
	diagnosed	rs606231185	made up of several enzymes including	content, KD lowers the production of lactate
		rs137853250	pyruvate dehydrogenase or E1	from pyruvate while providing ketones as an
		rs137853251		alternative fuel for energy production. Ketone
		rs606231186	gene), E3, as well as the PDHX, PDP1	bodies bypass the oxidation of pyruvate in
		rs606231187	enzymes, which regulate the activity	mitochondria and provide an alternative route
		rs606231188	of the complex.	for the production of acetyl-CoA.
		rs137853259	1	1 2
		rs137853252	Defects in any of these enzymes	Therapeutic ranges of BHB are 0.2-2 mM in
		rs606231189	impair the function of PDHC	presence of blood glucose levels <85 mg/dL.
		rs137853253	resulting in decreased conversion of	Exogenous ketones have been shown to have
		rs137853254	glucose-derived pyruvate into acetyl-	some efficacy as adjunct treatment to KD in
		rs137853255	CoA, buildup of lactate, and severe	PDCD children [PMID: 28510035].
		rs137853256	defects in brain development and	
		rs2229137	function.	
		rs606231190		
		rs137853257		
		rs606231191		
		rs137853258		
		rs1555935690		
		rs121917898		
		PDHB		
		rs28935769		
		rs28933391		
		DLAT		
		rs119103240		
		rs797044957		
		PDHX		
		rs1554989996		
		rs724159828		
		rs724159829		
		rs724159830		
		rs724159979		
		rs113309941		
		rs387906998		
		rs1135402725		
		PDP1		
		rs1554572756		
		rs267606938		
Genetic condition	ns in which KD : Prevalence	ameliorates clinica Gene & best	l symptoms and laboratory parameters Enzyme function & clinical signs	Benefits of KD/exogenous ketones and case
Somution	1 IC VAICINCE	characterized	Linzy me runction & chillear signs	reports
	1	maracterizeu	1	1. Porto
		mutations		

	1 . 5 400	1.01	m1 1 1 1 1 ·	
GSD type III (Farbas ar Cari	1 in 5,400 (North	AGL	The glycogen debranching enzyme breaks down the side chains of	KD may reduce glycogen storage in muscle
(Forbes or Cori disease)	(North African	rs387906244 rs113994126		and liver through the reduction of blood insulin levels and provide an alternative fuel
uisease)	Iewish	rs113994120	glycogen, which stores energy from	for energy through the induction of ketone
	population); 1	rs113994129	carbohydrates in muscle and liver.	bodies production.
	in 100,000	rs113994127	Different mutations in the AGL gene	bodies production.
	(United	rs113994134	can affect different isoforms of this	A few case studies reported that KD (classical
	(United States)	rs369973784	enzyme producing two clinical	KD or Modified Atkins Diet), with or without
	States)	rs199922945	phenotypes: GSD IIIa, which involves	supplementation of exogenous ketones,
		rs118203964		significantly improved cardiomyopathy in
		rs113994132	involves only the liver (Dagli et al	GSD IIIa [PMID: 25308556 (n=2, cKD); PMID:
		rs387906246	2010).	25431232 (n=2, MAD); PMID: 21857385 (n=1,
		rs780504025		2:1 KD)].
		rs113994128		
		rs267606639		
		rs267606640		
GSD type V	1:100,000	PYGM	Myophosphorylase breaks down	KD may reduce glycogen storage in muscle
(McArdle's	1.100,000	rs116987552	glycogen in muscle cells.	and liver through the reduction of blood
disease)		rs119103251	grycogen in muscle cens.	insulin levels and provide an alternative fuel
u13Ease)		rs119103252	Enzymatic defects can cause exercise	for energy through the induction of ketone
		rs267606993	intolerance with muscular pain and	bodies production.
		rs119103253	myoglobinuria.	boules production.
		rs119103254	ing ogroomania.	A few case studies reported that KD induced a
		rs144081869		marked improvement in exercise tolerance
		rs119103255		and quality of life in both children and elderly
		rs119103256		patient [PMID: 18425888, PMID: 16049943,
		rs786200874		PMID: 17915573]
		rs267606993		
		rs119103257		
		rs119103258		
		rs119103259		
		rs119103260		
		rs764313717		
		rs397514631		
Disorders of mite	Unknown.	gy supply POLG		
mtDNA depletion	Together,	rs113994099	Polymerase gamma is one of the enzymes catalyzing mtDNA	KD may reduce seizures.
syndromes	mitochondrial		replication.	In a case study in 6 patients with POLG
(MDS)	diseases occur	rs121918044	replication.	mutations, 5 of them experienced a substantial
(141D3)	in about 1 in	rs121918045	Enzymatic defects can cause	seizure reduction [PMID: 26109259].
	4,000 people.	rs121918046	intractable epilepsy with variable	seizare reduction [1 wild. 2010/207].
	i,000 people.	rs113994098	associated clinical symptoms.	
		rs113994094		
		rs121918047		
		rs121918048		
		rs121918049		
		rs113994096		
		rs121918050		
		rs113994097		
		rs121918051		
		rs41549716		
		1		
		rs121918052		
		rs121918052 rs1567185775		
		rs1567185775		
		rs1567185775 rs121918053 rs121918054 rs121918055		
		rs1567185775 rs121918053 rs121918054		

MELAS	Unknown.	MTTL1	Mitochondrial transfer-RNA, leucine,	KD may reduce seizures.
	Together,	rs199474657	1 (MTTL1) incorporates the amino	
	mitochondrial		acid leucine into mitochondrial	The use of KD and magnesium citrate as add-
	diseases occur	rs199474659	proteins.	on therapy to anti-epileptic drugs lead to
	in about 1 in	rs199474660		complete remission of seizures in a 22-year old
	4,000 people.	rs199474661	MTTL1 mutations impair the ability	patient carrying the rs199474663 MTTL1
		rs199474662	of mitochondria to make proteins, use	mutation [n=1; PMID: 24656211].
		rs199474663	oxygen, and produce energy leading	
		rs199474664 rs199474665	to neurological problems and other specific symptoms of MELAS.	
		rs199474666	specific symptoms of WELAS.	
		rs199474667		
		rs199474668		
Disorders of the n	nitochondrial re	espiratory chain (M	RC)	
Isolated complex	1 in 8500	NDUFV1	Complex I is the first of five	MRC defects are one of the most common
I deficiency		rs121913659	mitochondrial complexes that carry	causes of childhood epilepsy PMID: 18266755.
(NADH		rs768050261	out a multi-step process called	KD may reduce seizures. Compared to
ubiquinone		rs121913660	oxidative phosphorylation, through	carbohydrate oxidation, beta-oxidation of fatty
oxidoreductase		rs121913661	which cells derive much of their	acids provides more FADH2, thereby
deficiency)		rs199683937	energy.	bypassing complex I of the mitochondrial respiratory chain.
		ACAD9	Mutations in any of the components	
		rs387906242		A few case studies reported that KD may
		rs387907041	wide variety of symptoms affecting	reduce seizure frequency (4:1 KD) (n=24; Lee
		rs387907042 rs368949613	many organs and systems of the body, particularly the nervous system, the	et al 2008); n=9, Kang et al 2007; n=1, Seo et al
		rs115532916	heart, and skeletal muscle. They can	2010; n=1, Yoon et al 2014).), normalize cognitive function (n=1; Kang et al 2006), and
		rs377022708	also cause Leigh syndrome and Leber	improve ophthalmoplegia [n=1, PMID:
		rs762521317	hereditary optic neuropathy.	17162199]
		rs1057518752		
		FOXRED1		
		rs267606829		
		rs267606830		
		rs387907087		
		Other genes		
		involved:		
		MTND1-6		
		MTFMT		
		NDUFA1-2, 9-13		
		NDUFAF1-6		
		NDUFB3,9-11		
		NDUFS1-8		
		NDUFV1-2		
		NUBPL		
		ELAC2		
		PPA2 TIMMDC1		
		TMMDC1 TMEM126B		
		MTTL1		

Isolated complex II and IV deficiency and complex I/IV deficiency	Unknown	TMEM70 rs183973249 rs387907070 ATP5F1A rs587776960 rs587777788 ATP5F1E rs387906929 ATPAF2 rs104894554 MT-ATP6 rs199476133 rs199476135	Mutations in in mtDNA genes as well as in the nuclear gene TMEM70 can cause complex V deficiency. The resulting reduction in oxidative phosphorylation can lead to cell death by reducing the amount of energy available in the cell. Energy demanding organs, such as the nervous system, heart, liver, kidneys, and skeletal muscles, are most affected.	KD reduced or eliminated seizures in a few case studies of patients with different types of MRC deficiencies including isolated complex II, complex IV and complex I/IV deficiency [n=5, PMID: 17241212; n=24, PMID: 18266755]
		MT-ATP8		
Urea cycle disord	ers	rs267606881		
ASL deficiency	1 in 70,000 to 218,000	ASL rs28940585 rs28941472 rs28940287 rs28940286 rs28941473 rs28940287	ASL is an enzyme of the urea cycle, which processes excess nitrogen into urea. Urea is excreted by the kidneys preventing the buildup of nitrogen in the form of ammonia. ASL deficiency results in a buildup of ammonia, which damages the brain and other tissues causing frequent epilepsy, neurological problems, and other signs and symptoms of argininosuccinic aciduria.	KD with ongoing protein restriction may reduce seizure without aggravating hyperammonemia [n=2; PMID: 23430928].
Disorders of purin	ne metabolism			
ADSL deficiency	1	ADSL rs119450941 rs119450942 rs119450943 rs28941471 rs119450944	ADSL is a component of the purinosome, a protein complex involved in purine synthesis. ADSL deficiency impairs purine metabolism causing an accumulation of succinylaminoimidazole carboxamide riboside (SAICAr) and succinyladenosine (S-Ado), which are toxic to the brain and cause neurological problems. Approximately 50% of such patients present with epilepsy, which is often resistant to drugs.	KD reduced or eliminated seizures in two case studies of ADSL patients [n=1, PMID: 22140128; n=1, PMID: 23504561].

Disorders of amin	oacid metabolis	3m		
Non ketotic hyperglycinemia (NKH)	1 in 55-76000	GLDC rs121964974 rs121964975 rs121964976 rs386833549 rs121964977 rs121964978 rs121964979 rs121964980 AMT rs121964981 rs121964981 rs121964983 rs121964983 rs121964984 rs121964985 rs121964986 rs181134220	The glycine cleavage system (GCS) degrades the neurotransmitter glycine in the mitochondria. Mutations in the components of the GCS (GLDC, AMT, GCSH) cause accumulation of glycine in body fluids leading to severe neurological symptoms, including seizures, myoclonic jerks, and encephalopathy in the first days of life (neonatal form).	In a few reports, classical KD (4:1) in combination with antiepileptic drugs reduced seizures and glycine concentrations in cerebrospinal fluid and plasma, and improved quality of life. [n=3; PMID: 22261077, PMID: 26962342, PMID: 30108280].
		rs769468125		
Drug-Resistant E		70.01		
Tuberous sclerosis complex (TSC)	1 in 6000	TSC1 rs118203447 rs118203597 rs118203597 rs118203426 rs118203396 rs137854251 rs137854083 TSC2 rs45512692 rs137854337 rs45517179 rs28934872 rs45517214 rs121964862 rs45483392 rs45516293 rs45517349 rs137854218 rs45517259 rs45517258 rs45517258 rs45517258 rs45517258	Hamartin (TSC1) and tuberin (TSC2) are tumor suppressors proteins that down regulate protein synthesis and cell growth in presence of cellular stress or DNA damage. Mutations in TSC1-2 can cause the formation of benign tumors in many parts of the body as well as brain problems such as seizures, hyperactivity and aggression, and intellectual disability.	KD should be considered as a therapeutic option for seizure reduction, along with other modalities such as surgical resection of one or more tubers, corpus callosotomy, and vagal nerve stimulation [PMID: 16996395: study population: 12 children aged 8 months to 18 years with drug-resistant epilepsy].

Developmental and epileptic encephalopathy (DEE) ATP1A3-Related Neurologic Disorders MED23-	Unknown; 60- 65% of cases are undiagnosed due to genetic heterogeneity	SCN1A rs121918624 rs121918629 rs121918629 rs121918630 rs397514458 rs397514459 SCN2A rs387906683 rs387906684 rs387906685 rs387906686 KCNQ2 rs397514581 rs397514581 rs397514582 rs587777219 STXBP1 rs121918317 rs121918317 rs121918318 rs121918319 rs121918319 rs121918320 rs121918320 rs121918321 rs587776641 ATP1A3 rs80356537 rs387907281 rs387907282 rs398122887 rs53777771	genetically heterogeneous disorders characterized by early-onset drug- resistant seizures, electroencephalographic abnormalities, and developmental delay. Dravet syndrome (DS) is one of the most genetically homogeneous DEEs, with more than than 80% of DS cases are attributable to variants in SCN1A.	The use of KD has been shown to produce a ≥90% seizure reduction in 77-100% of patients carrying mutations in SCN1A, SCN2A, KCNQ2, or STXBP1. [PMID: 30061856] In a case report, KD reduced epileptic seizures and episodes of hemiplegia or uncontrolled movements, and produced long-term improvement of neurological development [n=1, PMID: 29395663]. KD eliminated seizures on the first day of
MED23- associated refractory epilepsy	Unknown	MED23 rs370667926	Med23 is a component of the Mediator complex, a key regulator of protein-coding gene expression. Mutations in MED23 can cause neurological problems characterized by developmental delay and refractory epilepsy such as mental retardation, autosomal recessive 18 (MRT18).	KD eliminated seizures on the first day of administration in a case report in a 2.5 year old child with MED23 refractory epilepsy [PMID: 27311965].

Abbreviations. SNP identification numbers (noted as "rs...") are the unique SNP identifiers from the NCBI dbSNP database. GLUT1: Glucose transporter protein type; PDC: pyruvate dehydrogenase; GSD: glycogen storage disease type III; mtDNA: mitochondrial DNA; MELAS: mitochondrial encephalopathy with lactic acidosis and strokelike episodes syndrome; ASL: argininosuccinate lyase; ADSL: adenylosuccinate lyase; AGL: amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase; TMEM70: transmembrane protein 70; GLDC: glycine decarboxylase; AMT: aminomethyltransferase; GCSH: glycine cleavage system, H protein; SCN1A: sodium channel, voltage-gated, type i, alpha subunit; SCN2A: sodium channel, voltage-gated, type ii, alpha subunit; KCNQ2: potassium channel, voltage-gated, kqt-like subfamily, member 2; STXBP1: syntaxin-binding protein 1. ATP1A3: ATPase, Na+/K+, Alpha 3. BHB: beta-hydroxybutyrate. Blood levels of BHB and glucose refer to those observed during metabolic decompensation.

Table S3: Candidate SNPs for the selection of KD as therapeutic option with no evidence from intervention studies of KD. Clinical Snapshot

Are these SNPs ready for clinical implementation?

No. The strength of scientific evidence for the use of this SNPs for the prediction of KD response is "not demonstrated" using a scoring system based on recent guidelines for the interpretation of nutrigenetic variants¹. These SNPs should be considered as candidate gene variants to evaluate and validate in research studies employing KD or exogenous ketone sources.

How can clinicians use these SNPs?

Clinicians can test the below associations as exploratory outcomes in clinic-based research of KD response. Please refer to the "Trait" column for a list of possible associations to test.

How can clinicians help accelerate the clinical implementation of these SNPs?

Clinicians can contribute to the building of a nutrigenomics knowledge base and accelerate the clinical implementation of these SNPs by testing them in clinic-based research, keeping records of their research data, and promoting the establishment of curated databases of nutrigenetic SNPs where they can submit their research data.

SNPs within ketone/fat metabolism genes associated with metabolic traits in observational studies						
Effect allele	Allele frequency	Trait	Effect on trait in observational studies			
HMGCS2 rs9943291-G	● T: 92% ● G: 8%	Blood glucose Hypertension	Increased ²			
SLC22A5 rs10060615-C	◆ T: 84% ◆ C: 16%	DBP	Increased ³			
SLC22A5 rs274555-C	◆ C: 43% ◆ T: 57%	Lean body mass	Increased ⁴			
CPT1A rs2924679-A	G: 92% ♦ A: 8%	Fat oxidation	Increased ⁵			
CPT1A rs7938117-A	◆ G: 76% ◆ A: 24%	TC LDL-C HDL-C	Decreased Decreased Decreased ⁶			
CPT1A rs597539-G	◆ C: 74% ◆ G: 26%	CAC	Decreased ⁷			
ACADM: rs11161521-T	 ◆ T: 83% ◆ C: 17% 	Carnitine metabolites	Increased ⁸			
ACADVL rs2286963-T	◆ T: 79% ◆ G: 21%	Carnitine metabolites	Increased ^{9 10}			
ACADS rs1799958-C	 ◆ G: 82% ◆ A: 18% 	Kidney disease serum metabolites (butyrylcarnitine)	Increased ¹¹			
ACADS rs3916-C	 ◆ G: 81% ◆ C: 19% 	Disease serum metabolites (cancer, coronary heart disease)	Increased ¹²			

Abbreviations: SNP identification numbers (noted as "rs...") are the unique SNP identifiers from the NCBI dbSNP database; HF: high fat diet (fat 40%; carbohydrate 35% or 40%); LF: low fat diet (fat 20%; carbohydrate 60% or 65%); HDL-C: HDL cholesterol; RQ: respiratory quotient; TC: Total cholesterol, LDL-C: LDL cholesterol, TG: triglycerides; MetS: metabolic syndrome; WC: waist circumference; CAC: coronary artery calcification; DBP: diastolic blood pressure.

References

- 1. Grimaldi KA, van Ommen B, Ordovas JM, et al. Proposed guidelines to evaluate scientific validity and evidence for genotype-based dietary advice. *Genes & nutrition* 2017;12:35. doi: 10.1186/s12263-017-0584-0 [published Online First: 2017/12/23]
- Singh S, McDonough CW, Gong Y, et al. Genome Wide Association Study Identifies the HMGCS2 Locus to be Associated With Chlorthalidone Induced Glucose Increase in Hypertensive Patients. *Journal of the American Heart Association* 2018;7(6) doi: 10.1161/jaha.117.007339 [published Online First: 2018/03/11]
- Giri A, Hellwege JN, Keaton JM, et al. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. *Nature genetics* 2019;51(1):51-62. doi: 10.1038/s41588-018-0303-9 [published Online First: 2018/12/24]
- Hübel C, Gaspar HA, Coleman JRI, et al. Genomics of body fat percentage may contribute to sex bias in anorexia nervosa. *Am J Med Genet B Neuropsychiatr Genet* 2019;180(6):428-38. doi: 10.1002/ajmg.b.32709
- Comuzzie AG, Cole SA, Laston SL, et al. Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population. *PloS one* 2012;7(12):e51954. doi: 10.1371/journal.pone.0051954 [published Online First: 2012/12/20]
- Qi G, Chatterjee N. Heritability informed power optimization (HIPO) leads to enhanced detection of genetic associations across multiple traits. *PLoS genetics* 2018;14(10):e1007549. doi: 10.1371/journal.pgen.1007549 [published Online First: 2018/10/06]
- Divers J, Palmer ND, Langefeld CD, et al. Genome-wide association study of coronary artery calcified atherosclerotic plaque in African Americans with type 2 diabetes. *BMC genetics* 2017;18(1):105. doi: 10.1186/s12863-017-0572-9 [published Online First: 2017/12/10]
- 8. Shin SY, Fauman EB, Petersen AK, et al. An atlas of genetic influences on human blood metabolites. *Nature genetics* 2014;46(6):543-50. doi: 10.1038/ng.2982 [published Online First: 2014/05/13]
- Draisma HHM, Pool R, Kobl M, et al. Genome-wide association study identifies novel genetic variants contributing to variation in blood metabolite levels. *Nature communications* 2015;6:7208. doi: 10.1038/ncomms8208 [published Online First: 2015/06/13]
- Krumsiek J, Suhre K, Evans AM, et al. Mining the unknown: a systems approach to metabolite identification combining genetic and metabolic information. *PLoS genetics* 2012;8(10):e1003005. doi: 10.1371/journal.pgen.1003005 [published Online First: 2012/10/25]
- 11. Li Y, Sekula P, Wuttke M, et al. Genome-Wide Association Studies of Metabolites in Patients with CKD Identify Multiple Loci and Illuminate Tubular Transport Mechanisms. *Journal of the American Society of Nephrology : JASN* 2018;29(5):1513-24. doi: 10.1681/asn.2017101099 [published Online First: 2018/03/17]
- Rueedi R, Ledda M, Nicholls AW, et al. Genome-wide association study of metabolic traits reveals novel gene-metabolite-disease links. *PLoS genetics* 2014;10(2):e1004132. doi: 10.1371/journal.pgen.1004132
 [published Online First: 2014/03/04]