Potential for elimination of folate and vitamin B_{12} deficiency in India using vitamin-forfitted tea: a preliminary study

Ravindra M Vora,1 Meryl J Alappattu,2 Apoorva D Zarkar,3 Mayur S Soni,3 Santosh J Karmarkar,4 Asok C Antony5

ABSTRACT
Introduction The majority of Indian women have a poor dietary folate and vitamin B_{12} intake resulting in their chronically low vitamin status, which contributes to anaemia and the high incidence of folate-responsive neural-tube defects (NTDs) in India. Although many countries have successfully deployed centrally-processed folate-forfitted flour for prevention of NTDs, inherent logistical problems preclude widespread implementation of this strategy in India. Because tea—the second most common beverage worldwide (after water)—is consumed by most Indians every day, and appeared an ideal vehicle for fortification with folate and vitamin B_{12}, we determined if daily consumption of vitamin-forfitted tea for 2 months could benefit young women of childbearing-age in Sangli, India.

Methods Women (average age=20±2.5 SD) used teasbags spiked with therapeutic doses of 1 mg folate plus either 0.1 mg vitamin B_{12} (Group-1, n=19), or 0.5 mg vitamin B_{12} (Group-2, n=19), or mock-forfitted teasbags (Group-0, n=9) to prepare a cup of tea every day for 2 months, following which their pre-intervention and post-intervention serum vitamin and haemoglobin concentrations were compared.

Results Most women had baseline anaemia with low-normal serum folate and below-normal serum vitamin B_{12} levels. After 2 months, women in both Group-1 and Group-2 exhibited significant increases in mean differences in pre-intervention versus post-intervention serum folate levels of 8.37 ng/mL (95% CI 5.69 to 11.04, p<0.05) and 6.69 ng/mL (95% CI 3.93 to 9.44, p<0.05), respectively; however, Group-0 experienced an insignificant rise of 1.26 ng/mL (95% CI −4.08 to 0.16). In addition, over one-half and two-thirds of women in Group-1 and Group-2, respectively, exhibited increases in serum vitamin B_{12} levels over 300 pg/mL. There was also a significant post-interventional increase in the mean haemoglobin concentration in Group-1 of 1.45 g/dL (95% CI 0.64 to 2.26, p=0.002) and Group-2 of 0.79 g/dL (95% CI 0.11 to 1.42, p=0.027), which reflected a bona fide clinical response.

Conclusion Tea is an outstanding scalable vehicle for fortification with folate and vitamin B_{12} in India, and has potential to help eliminate haematological and neurological complications arising from inadequate dietary consumption or absorption of folate and vitamin B_{12}.

What this paper adds
- Although many countries have successfully deployed centrally-processed folate-forfitted flour for prevention of neural-tube defects, several inherent logistical problems preclude widespread implementation of this strategy in India. This is an important issue to resolve because Indian women of childbearing age, who have a poor dietary intake of both folate and vitamin B_{12} and low-vitamin status, uniformly prefer food-based vitamin supplements.
- We posited that a single daily cup of tea, which is consumed by most Indians, has outstanding characteristics as an actionable and scalable vehicle for fortification with these water-soluble vitamins.
- Accordingly, under the aegis of a therapeutic care protocol for women of childbearing age in Sangli, India, we exploited folate-spiked and vitamin B_{12}-spiked teasbags as Trojan Horses to deliver therapeutic doses of these vitamins into their daily cup of tea over 2 months. This led to significant rises in their serum folate, serum vitamin B_{12}, and haemoglobin concentration.
- Although additional research is needed, these preliminary data suggest that eventual adoption of large-scale forfication of tea with folate-and vitamin B_{12} in India has real potential to eliminate haematological and neurological complications arising from inadequate dietary consumption or absorption of folate and/or vitamin B_{12} in all stages of life.

INTRODUCTION
Most women of childbearing-age in India consume a poorly balanced diet that leads to a chronically low folate-and-vitamin B_{12} status.1-8 An equally disturbing finding is that (for a variety of reasons) up to 90% of the world’s women (who reside primarily in resource-limited countries) do not receive sufficient dietary folate.8-10 This is a particularly serious issue, given the compelling evidence of a causal relationship between periconceptional low-folate status and an increased risk...
in the incidence of folate-responsive (folate-preventable) neural-tube defects (NTDs). Conversely, periconceptional folate supplementation has consistently reduced the risk of both first occurrence and recurrence of NTDs by over 70%. These studies have informed recommendations for dietary guidelines and fortification of flour with folic acid, led to markedly improved serum folate concentrations in populations receiving folate-fortified flour, and substantially reduced first-occurrence of NTDs. Globally over 80 countries mandate folate-fortification of industrially-milled cereal grain.

Despite the documented success of folate-fortification of flour for two decades, this rosy picture masks three significant inter-related issues which have remained perpetually vexing problems in India that warrants high-lighting and begs an urgent solution:

1. There are inherent limitations related to the equitable distribution of folate-fortified flour throughout India. In general, successful implementation of such a programme necessitates the process of folate-fortification of flour be carried out centrally in large roller-mills for milling cereal, from where it can be widely distributed to reach populations living in the smallest towns, villages and hamlets throughout India. This poses significant logistical challenges within the Indian context where approximately 70% of the population live in over 650,000 villages, cereal grain is more often grown and purchased locally, and flour is prepared by small-scale millers in these villages; this effectively bypasses any need for centrally-processed fortified flour. This fact predicts that India is unlikely to achieve a robust folate-food fortification programme solely using flour, and opens the door to identification of alternate food vehicles that are contextually-appropriate for fortification.

2. There is a high incidence of nutritional vitamin B₁₂ deficiency (estimated in three-quarters of the population) among vegetarians and non-vegetarians in India who usually subsist on a ‘near-vegetarian’ diet. In the city of Pune, in Maharashtra (the second largest state of India: population 114 million), vitamin B₁₂ deficiency is documented in two-thirds of non-pregnant women, as well as pregnant rural women, but in Haryana it was found in 74%. Therefore, without also replenishing deficient vitamin B₁₂ consumption of supplemental folate alone through folate-fortified flour will not be adequately used by tissues because the key intracellular enzyme, methionine synthase, depends on the presence of vitamin B₁₂ as a co-factor to sustain intracellular one-carbon metabolism.

3. The consequence of these nutritional deficiencies have an extremely serious impact on the incidence of severe but preventable birth defects. Our population-based study on NTDs carried out in the least-developed area of India (Balrampur District, Uttar Pradesh) in 2005, identified up to 8.2-affected babies with NTD per 1000 live births, which is among the highest in the world. A decade later, another population-based study modelled after ours in the same State (Uttar Pradesh), confirmed a persistently high incidence of NTD (up to 7.48-cases per 1000 live births). Thus, there has been no progress in NTD-prevention in this most populous state of India of ~200 million. A systematic review of all studies in India primarily from tertiary referral centres (which do not capture as many NTDs as population-based studies) revealed a more conservative prevalence of 4.1-cases of NTDs per 1000 live births. Given the approximately 26 million births annually in India, this is still an unacceptably large burden of folate-preventable NTDs in India, particularly since it is estimated that up to 90% of these birth defects can be prevented by improvement in the folate (and vitamin B₁₂) status of women in India. It is estimated that a robust programme in India that optimises the periconceptional (folate and vitamin B₁₂) nutrition of Indian women can avoid the tragedy of 115,000 babies being born with NTD every year.

We have also determined that despite knowledge of their low dietary intake of folate and vitamin B₁₂ and potential adverse risks to the well-being of their future progeny, most young Indian women attending undergraduate college expressed staunch resistance to taking daily supplements of vitamins in tablet form; however, they were open to consumption of a fortified staple food that is a part of their daily diet (see online supplemental material).

Based on these considerations, we posited that tea meets criteria as an ideal, contextually-appropriate, food vehicle for full therapeutic replenishment with folate and vitamin B₁₂ (and by implication, for fortification) in India for several reasons: besides water, tea is the most common beverage in India (and worldwide), and is largely grown and processed in the highlands of only 4 (out of 28) states of India—Assam, West Bengal, Tamil Nadu and Kerala. Moreover the vast majority of adult Indians from every geographical area within India—from megacities to the smallest towns, villages and hamlets—consume at least one cup of tea from one of these regions every day; thus, tea retains a unique role by being a common ‘food’ that rises above the otherwise extremely diverse food preferences of Indians.

There has been no previous documentation of the feasibility of using tea as a vehicle for delivery of therapeutic doses of folate and vitamin B₁₂ in humans. Accordingly, we embarked on a preliminary study to assess the feasibility of using vitamin-fortified teabags as a means to deliver full therapeutic replacement doses of pure folate and vitamin B₁₂ in a daily cup of tea over 2 months to Indian women of childbearing age in a region of the state of Maharashtra where most young women have a low folate and vitamin B₁₂ status. The efficacy of using tea prepared from vitamin-fortified teabags in this population was assessed primarily by focusing on whether there were significant changes in each individual woman’s pre-intervention versus post-intervention serum folate and vitamin B₁₂ levels and haemoglobin.
Because this was the very first exploration on therapeutic repletion of low vitamin status in humans using this strategy, we did not have any guidelines on the sample size to be used. We limited the number of control subjects based on the following reasoning: The finding of a high prevalence of low folate and vitamin B\textsubscript{12} status among young women in Sangli (online supplemental figure S1) allowed for the inference that any available folate and vitamin B\textsubscript{12} in their daily cups of (unfortified) tea could not meaningfully increase the serum folate and vitamin B\textsubscript{12} over 2 months in a control group of women consuming (unfortified) tea. Hence, we could not justify inclusion of an equivalent number of control subjects as those in the experimental arm of the study (who would be administered full therapeutic replacement doses of folate and vitamin B\textsubscript{12} daily through vitamin-fortified tea). Accordingly, we primarily focused on comparison of each subject’s pre-intervention serum levels with her post-intervention serum levels as the initial measure of efficacy, whereas group-wise comparisons between the experimental and control subjects would necessarily be limited by the smaller number of women assigned to the control group.

Recruitment of subjects

Women recruited for the teabag intervention study were from the RR Patil College of Nursing Education and College of Homeopathy, Sangli. Inclusion criteria for entry into the trial were women between 18–25 years with no medical history of illness in the past 6 months. Each participant would necessarily agree to consume a daily cup of tea using their uniquely assigned teabags for 2 months everyday (from Monday to Saturday in the college cafeteria, and on Sunday in their homes). Exclusion criteria included existing pregnancy or planning pregnancy, use of iron, folate or vitamin B\textsubscript{12} or other multivitamins in the previous 6 months or during the 2 months of the trial, and any other chronic medical illness, or fever, or diarrhoea in the prior 3 months. These studies were initiated and completed in 2019 before the COVID-19 outbreak reached India.

Informed consent

Two authors (RMV and ACA) delivered a lecture for women who were potential candidates for entry into the teabag intervention study: This lecture highlighted the problem of dietary folate deficiency and vitamin B\textsubscript{12} deficiency in India; the consequences for adverse pregnancy outcomes of women who were folate-deficient and/or vitamin B\textsubscript{12}-deficient; and the general plan of the study. Ample time was allotted for answering questions. Those women expressing an interest in this study were provided with informed consent forms, which highlighted details of the study. These informed consent forms contained specific assurance that we would administer full doses of vitamin replacement (1 mg tablets of vitamin B\textsubscript{12} and folate daily for 2 months) to the group assigned mock-fortified teabags, as well as for any other women using...
Fortification of teabags containing Indian tea (Camellia sinensis) with folic acid and vitamin B₁₂

Preliminary observations on the dissolution of the vitamins, appearance and organoleptic assessment of vitamins dissolved in brewed tea are described in online supplemental material. The exposure of vitamins to heat following brewing of tea involved teabags being steeped in approximately 95°C hot water (75–100mL) for 2–5 min before addition of room temperature milk and sugar; this extent of heat exposure is far less than that involved in baking vitamin-fortified bread, where the majority of both vitamins were stable and functionally capable of raising blood vitamin levels among healthy adults. Fortification of teabags was carried out in a darkened room, with windows covered by dark coloured cloth to avoid ultraviolet light induced photodegradation of folic acid and vitamin B₁₂.

Each teabag was spiked with pharmacological doses of folate (1 mg folate) plus either of two equally efficacious doses of vitamin B₁₂ (0.1 mg or 0.5 mg, respectively) that were precisely applied onto each teabag for two equal cohorts of women of childbearing age in Sangli (n=19). As reasoned above (Strategy and Study Design), we also planned to randomly assign a much smaller cohort of women (n=5) to simultaneously receive mock-fortified teabags for 2 months to assess for any changes in serum vitamin levels to unfortified tea; after the 2-month trial, this group would then be given an additional 2 months of full vitamin replacement tablets (ie, with a 2-month delay compared with the other groups).

We used commercially available teabags, each composed of a filter paper bag containing 2g Brooke Bond Taj Mahal tea—an orange pekoe blend of black tea with characteristic dark-red brew, a strong malty flavour and full body. Both folic acid and vitamin B₁₂ used to fortify tea were of USP-grade and obtained from Sigma-Aldrich (USA); this was in keeping with Food Safety and Standards Authority of India (FSSAI) regulations on the use of USP-grade vitamins for medical use in humans.

Applying precise amounts of dissolved solutions of vitamin B₁₂ (red colour) and folate (yellow colour) using an Eppendorf pipette left a small coloured stain on each teabag in Group-1 and Group-2. For mock-fortified teabags for controls (Group-0), we used two US Food and Drug Administration-approved food colouring agents, Chefmaster Liqua-Gel Food Golden-Yellow and Super-Red colours (Byrnes & Kiefer Company, Fullerton, California). Diluting 5mL of stock Golden-Yellow and Super-Red into 50mL water perfectly matched the colour of stock solutions of folate and vitamin B₁₂, respectively. Thus, women in Group-0 used teabags spiked with 25μL each of Super-Red plus Golden-Yellow food colouring; women in Group-1 used teabags spiked with 0.1mg (5μL) vitamin B₁₂ plus 1mg (50μL) folate; and women in Group-2 used teabags spiked with 0.5mg (25μL) vitamin B₁₂ plus 1mg (50μL) folate. After addition of vitamin B₁₂ and folate (or food colouring) to teabags, they were gently dried using a hair dryer and repacked in original boxes, now specifically coded for Group-0, Group-1 and Group-2.

Logistics of tea delivery and consumption

After informed consent was obtained, women were randomly assigned using a lottery format to either receive mock-fortified tea in Group-0 (n=5), or to fixed doses of folate in Group-1 and Group-2, with increasing doses of vitamin B₁₂—fortified tea in Group-1 (n=19) and Group-2 (n=19), respectively. Confirmation that the teabags were correctly distributed to each of the participants in the three Groups was verified by the investigators. Women were blinded as to which Group they were assigned. A blood sample was obtained for measurement of baseline pre-intervention serum folate, serum vitamin B₁₂, and haemoglobin. Women kept their Group-assigned teabags in lockers at the college. During each mid-morning ‘tea-break’ (Monday through Saturday), they were provided with a near-boiling cup of hot water (75–100mL) into which they dunked their assigned teabags for 2–3 min after which milk and sugar was added to taste. Women took one of their assigned teabags home for their Sunday mid-morning tea. Compliance was maintained by two class monitors who observed the subjects drinking tea every day in college and kept a daily ‘tea attendance record’. At the end of 2 months of daily use of trial teabags, a repeat post-intervention blood sample was taken for serum folate, serum vitamin B₁₂ and haemoglobin for comparison with the pre-intervention values.

Following the study, all women with persistently low serum folate and/or serum vitamin B₁₂ levels in post-intervention blood samples were provided tablets containing 1mg folic acid and 1mg vitamin B₁₂ and advised to take them daily for 2 months.

Blood tests

Venous blood for haemoglobin and vitamin determination was drawn from each woman between 1–2 days before the intervention with vitamin-fortified or mock-fortified teabags from the Ghatage Hospital Laboratory; these were the pre-intervention blood samples. Of 5mL blood drawn from each woman, 1mL was for sent for a complete blood count at the Ghodawat Diagnostic Center, Sangli, and the remainder processed for measurement of serum folate and vitamin B₁₂. Briefly, following separation of serum within 1 hour of blood collection, samples were transported chilled in ice-packs to Mumbai by courier where serum folate and vitamin B₁₂ levels were measured at Metropolis Laboratory, Mumbai, within 1 day of receipt.
using a chemiluminescence immunoassay. A second blood sample was drawn within 2 days after completion of the intervention with teabags from all women. A portion of this post-intervention sample was again sent for a complete blood count, and the remainder was similarly processed, transported and analysed for serum folate and vitamin B_{12} by Metropolis Laboratory, Mumbai, as described above. Normal values for serum folate from this laboratory was $3–17$ ng/mL; the reference range for normal serum vitamin B_{12} was between $187–883$ pg/mL. The coefficient of variation for folate assays was 8.7% and for vitamin B_{12} was 7.7%.

Statistics

Analyses of variance were used to evaluate between-group mean differences in levels of pre-intervention versus post-intervention serum folate, serum vitamin B_{12} and haemoglobin. Paired t-tests were used to evaluate within-group differences. Non-normally distributed data were evaluated using the non-parametric Kruskal-Wallis and Wilcoxon signed-rank tests. To account for multiple comparisons (eg, involving all three Groups), we used a conservative alpha of 0.02 (0.05/3). For within-group comparisons and comparisons between two groups, we used an alpha of 0.05. All statistics were conducted using IBM SPSS Statistics V.25.

Role of funding source

Neither the Manavrahat Charitable Trust nor any other institution or individual had any role in the study design, data collection, data analysis, data interpretation, in writing of the report or in decision to submit the paper for publication.

RESULTS

Low folate and vitamin B_{12} status is common among young women in Sangli

Studies on a group of 60 women (average age=22±3 SD) who were nursing students at the Kulloli Institute of Nursing Sciences in Sangli (see online supplemental figure S1) revealed that 95% had evidence for low-folate status (with 80% having below-normal serum folate values, consistent with frank folate deficiency). In addition, 63% of these women also had low-vitamin B_{12} status (with 23% having frank vitamin B_{12} deficiency, based on below-normal serum levels). Therefore, women of childbearing-age in Sangli also exhibited a low-folate and low-vitamin B_{12} status, similar to that reported in Pune, which reflected their uniformly inadequate dietary intake of these vitamins. This justified preliminary studies to develop a therapeutic care protocol designed to reverse low-vitamin stores among a comparable cohort of women in Sangli, with an ultimate goal to scale up studies to benefit millions of women with low-folate and low-vitamin B_{12} status throughout India.

Organoleptic features of brewed tea using vitamin-fortified teabags

Preliminary data on the dissolution of vitamins in water, camouflage of vitamins in tea and organoleptic assessment of vitamins dissolved in brewed tea are described in the online supplemental material. The consumption of tea prepared from teabags fortified with folate and vitamin B_{12} (Group-1 and Group-2) compared with mock-fortified teabags (Group-0) precluded subjects from discerning which Group they belonged to; this extended to their inability to discern differences between vitamin-fortified and unfortified tea, since neither the inclusion of pure vitamin B_{12} nor folate, nor the infusion of colouring in the amber-reddish brewed tea imparted any changes to the original high quality, unique flavour, and aroma of this brand of tea—so its unique ‘terroir’ was retained. Over 90% of women adhered to the protocol and none modified their regular diet during the trial.

Basal values and responses to folate-fortified tea

When baseline values for serum folate were examined (figure 1A), women in Group-0 (n=5, average age=20±1 SD), Group-1 (n=19, average age=20±2 SD) and Group-2 (n=19, average age=20±1 SD), had mean serum folate levels of 5.3, 4.6 and 5.5 ng/mL, respectively; (normal serum folate is 3–17 ng/mL (Metropolis Laboratory)). Thus, there were no differences in pre-intervention mean serum folate levels for subjects in any of the three Groups. A small minority of women had serum folate levels that were frankly below normal—0 among 5 in Group-0, 4 of 17 in Group-1 (2 blood samples were lost), and 2 of 19 in Group-2.

However, in response to intervention with daily mock-fortified tea (Group-0) or daily 1 mg of folate-fortified tea (Group-1 and Group-2) for 2 months, there were important results in serum folate levels both within-Groups and between-Groups (figure 1A). Thus, for Group-0, the mean difference in pre-intervention versus post-intervention serum folate level was only 1.26 ng/mL.
Figure 2 Comparison of the individual responses of serum folate levels (A, left panels) and serum vitamin B₁₂ levels (B, right panels) among various Groups of women at baseline (pre-intervention) and after 2 months (post-intervention) consumption of a daily cup of tea using either mock-fortified teabags (Group-0, n=5, (average age=20±1 SD), upper panel), or folate-fortified and vitamin B₁₂-fortified teabags (Group-1, n=19, (average age=20±2 SD) containing 0.1 mg vitamin B₁₂ plus 1 mg folate per cup, middle panel) or (Group-2, n=19, (average age=20±1 SD) containing 0.5 mg vitamin B₁₂, plus 1 mg folate per cup, lower panel). Each coloured line denotes a single woman’s pre-intervention to post-intervention response. The lower limit of normal for the serum folate concentration corresponding to a value of 3 ng/mL is shown as a horizontal dotted line in each of the three panels on the left. The lower limit of normal for serum vitamin B₁₂ concentration corresponding to a value of 187 pg/mL is shown as a horizontal dotted line through each of the three panels on the right.

(95% CIs −4.08 to 0.16), indicating no statistical differences. By contrast, the mean difference in pre-intervention versus post-intervention serum folate level for Group-1 was 8.37 ng/mL (95% CI 5.69 to 11.04), and Group-2 was 6.9 ng/mL (95% CI 3.93 to 9.44), indicating a statistically significant difference (p<0.001) within both Group-1 and Group-2. In addition, between-Group comparisons of Group-0 and Group-1 also indicated a statistically significant mean difference in post-intervention serum folate level in response to daily folate-fortified tea consumption (p=0.02). Not surprisingly, there were no differences between post-intervention serum folate levels in Group-1 and Group-2.

The individual responses of women to mock-fortified tea or folate-fortified tea are shown in figure 2A. Of significance, in Group-0 (figure 2A, upper panel), three of five women showed no change in pre-intervention and post-intervention serum folate results, but two of five women exhibited a small rise from 4 to 8 ng/mL. By contrast, all 17 women in Group-1 (including four with very low folate levels) exhibited a rise in serum folate levels after 2 months consumption of folate-fortified tea (figure 2A, middle panel); within this group, 11 had a rise in serum folate above 10 ng/mL whereas six remained below this value. Likewise, in Group-2 (figure 2A, lower panel) 17 of 19 women had a post-intervention rise in serum folate (including 12 with serum folate levels over 10 ng/mL). Among two women in whom post-intervention serum folate levels dropped, one into a low-normal level and another to below-normal levels, their vitamin B₁₂ levels were observed to double—to just below-normal in one, and to just above normal in the other, respectively. These findings reflect the well-known reciprocal effect of vitamin B₁₂ deficiency in artificially raising serum folate levels, and reversal of this phenomenon on relief of vitamin B₁₂ deficiency (discussed in Reference 4). Similar results have been observed among Indian children with combined vitamin B₁₂ and folate deficiency; after their vitamin B₁₂ deficiency was treated, serum folate levels of children with severe, persistent folate deficiency also dropped (Reference 4 and references therein).

Taken together, these studies demonstrated that the majority (34 of 36) women in Group-1 and Group-2 who received a daily cup of tea fortified with 1 mg of folate over 2 months had a statistically significant elevation in serum folate levels when compared with controls in Group-0 who received mock-fortified tea.

Basal values and responses to vitamin B₁₂-fortified tea

When baseline values for serum vitamin B₁₂ (figure 1B) among women in Group-0 was examined, four of five had below-normal levels (normal serum vitamin B₁₂ is 187–885 pg/mL (Metropolis Laboratory)); the remaining woman had a serum vitamin B₁₂ level of 215 pg/mL, which is at the lower range of normal for this assay. (A serum vitamin B₁₂ value of 300 pg/mL can have metabolic evidence for vitamin B₁₂ deficiency when more sensitive metabolite studies are employed). In Group-1, 15 of 17 women had below-normal serum vitamin B₁₂ levels at baseline, with 2 women in the low-normal range (150 and 282 pg/mL). And in Group-2, 13 of 19 women had below-normal serum vitamin B₁₂ levels, whereas 4 of 6 women had values in the low-normal range (194, 206, 264 and 202 pg/mL); only 2 women had much-abundant serum vitamin B₁₂ levels (at 313 and 476 pg/mL).

There was no significant difference in pre-intervention mean serum vitamin B₁₂ levels among Group-0, Group-1 and Group-2 (figure 1B). Although there was a statistically significant post-intervention increase in serum vitamin B₁₂ levels within each Group, the between-Group comparisons were not significant. This was because of an unexplained upward-drift in Group-0 where three of five women exhibited a small rise in the post-intervention serum vitamin B₁₂ levels into the low-normal range (less than 300 pg/mL); one woman had essentially unchanged values from 215 to 217 pg/mL, whereas another rose from 148 to 324 pg/mL. This was similar to earlier observations by Solomon who noted variation in results (up to 23%) when individual subjects with borderline low-normal serum vitamin B₁₂ values were followed longitudinally over
2–6 weeks, with documented differences in serum vitamin B_{12} values above 100 pg/mL in one-fifth of patients. This likely reflects the relatively imprecise nature of the serum vitamin B_{12} assay, especially at the lower range of normal values. In addition, the mean difference in post-intervention versus pre-intervention serum vitamin B_{12} in Group-0, Group-1 and Group-2, were 132, 250 and 294 pg/mL, respectively (figure 1B); this continued rise in serum vitamin B_{12} levels among women in Group-1 and Group-2 who received progressively more vitamin B_{12}-fortified tea (when compared with Group-0) suggested a dose-response relationship.

The individual responses of women before and after the trial using vitamin B_{12}-fortified tea is shown in figure 2B, where the depth of response reflected by post-intervention serum vitamin B_{12} levels are better contrasted between Group-0 (figure 2B, upper panel) versus Group-1 (figure 2B, middle panel) and Group-2 (figure 2B, lower panel). Thus, in women in Group-0 who received mock-fortified tea, there was only a small rise in serum vitamin B_{12} into the low-normal range. By contrast, in Group-1, 10 of 17 women who received tea fortified with 0.1 mg vitamin B_{12} raised their serum vitamin B_{12} levels over 300 pg/mL; the remaining women exhibited a smaller rise into the low-normal range (less than 300 pg/mL). Likewise, in Group-2, 13 of 19 women receiving 0.5 mg vitamin B_{12}-fortified tea exhibited a rise in serum vitamin B_{12} above 300 pg/mL; among the remainder, 5 women who normalised their serum vitamin B_{12} values into the low-normal range had smaller rises (less than 300 pg/mL); only 1 subject with a baseline serum vitamin B_{12} level of 476 pg/mL failed to exhibit a rise in post-trial levels.

Taken together, these data following the use of different strengths of vitamin B_{12}-fortified tea suggested a dose-response relationship, and the majority of women using vitamin B_{12}-fortified teabags every day for 2 months raised their serum vitamin B_{12} levels well into the normal range. The inability of many women to exhibit a brisk rise in vitamin B_{12} level post-intervention likely reflects the severity of their baseline low-vitamin B_{12} status, and the need to clarify the optimum dose and duration of daily replenishment with vitamin B_{12}-fortified tea.

Basal haemoglobin values and responses to folate-fortified and vitamin B_{12}-fortified tea

A majority of Indian women of childbearing-age have iron deficiency in addition to low-vitamin B_{12} and low-folate nutrition. Indeed, most study subjects had anaemia (haemoglobin less than 12 g/dL) in pre-intervention blood samples: Thus, in Group-0, 4 of 5 had anaemia (1 blood sample was lost); in Group-1, 14 of 16 had anaemia (1 blood sample was lost); and in Group-2, 15 of 19 had anaemia. Figure 3 shows a comparison of mean haemoglobin values in women from both Group-1 and Group-2 at baseline and after 2 months consumption of a daily cup of tea using folate-fortified and vitamin B_{12}-fortified teabags. (Due to an inadvertent communication error, post-intervention haemoglobin levels were not uniformly obtained in all three Groups). There was a significant post-intervention mean rise in haemoglobin among women in Group-1 of 1.45 g/dL (95% CI 0.64 to 2.26, p=0.002) and in Group-2 of 0.79 g/dL (95% CI 0.11 to 1.42, p=0.027), which indicated a clinical response. Thus, among 12 women in Group-1 who had post-intervention haemoglobin tests, 7 normalised their haemoglobin with a rise of between 1–2 g/dL; and both women with normal haemoglobin values pre-intervention further increased their post-intervention haemoglobin by over 1 g/dL. Likewise, 4 out of 11 women in Group-2 with baseline anaemia had a post-intervention normalisation of haemoglobin of 1–1.5 g/dL, whereas 3 women with continued anaemia nevertheless improved their haemoglobin values by ~0.5 g/dL.

Thus, when taken together, there was a significant reversal of low-vitamin B_{12} and low-folate status that coincided with a significant mean increase of haemoglobin among those women from both Group-1 and Group-2 who were tested after consumption of a daily cup of folate- and vitamin B_{12}-fortified tea for 2 months.

DISCUSSION

To our knowledge, there has been no previous report on the therapeutic use of vitamin-fortified tea to raise the serum folate or vitamin B_{12} levels of women in India, or elsewhere. Although flour and rice fortification are under study, there are significant regional dietary variations throughout the vast Indian subcontinent (arising from cultural, religious, ethnic differences and beliefs) that will necessarily limit the use of these fortified products to the regions they are consumed. However, tea is
a universal beverage consumed by most adults in every
city, town, village and hamlet throughout India. This fact
highlighted tea as a potentially ideal vehicle for fortifica-
tion with both folate and vitamin B₁₂, which could result
in its widespread distribution and use, and thereby deci-
sively ensure long-lasting benefits for Indians.

Parenthetically, testing of tea as a vehicle for fortifi-
cation with folate and vitamin B₁₂ to reverse poor-folate
and poor-vitamin B₁₂ status among women of childbear-
ing-age in India (ie, where tea is used as a ‘nutraceutical’)
is entirely consistent with existing Food Safety and Stan-
dards Authority of India (FSSAI) regulations.44 FSSAI has
also declared an intention to pursue ways to improve the
vitamin status of vulnerable subjects in India47—that is,
‘Food fortification is a realistic and sustainable complementary
strategy to food supplementation and dietary diversification
to eliminate micronutrient deficiencies’; and, ‘It is, therefore,
important to identify commodities that are ‘Fortifiable’, that
is those staple foods that go through processing by organised
industry’.

Vitamin-fortified tea efficaciously reverses low folate and
vitamin B₁₂ status in Indian women

We found a high prevalence of low-vitamin B₁₂ and low-
folate status as well as anaemia among women of childbear-
ing-age in Sangli, India, irrespective of whether they
were vegetarian or non-vegetarians—the latter are defined as non-vegetarians who consume small
portions of animal-source foods only once or twice
a week.125 As a result, there is often little difference in
dietary intake of folate and vitamin B₁₂ content between
those consuming vegetarian or non-vegetarian diets,
as best illustrated among affluent urban-dwelling indi-
viduals and neighbouring slum-dwelling individuals in
North India.48 Because of a strongly expressed prefer-
ence for food-based vitamin supplements to reverse their
extant low vitamin intake and status by scores of women of
childbearing-age from several states of India (see online
supplemental material), our focus was on identifying a
commonly-consumed, scalable, fortifiable food for rapid
replenishment of folate and vitamin B₁₂.

Fortification with folate and vitamin B₁₂ did not modify
the terreoir of the tea, thereby retaining its acceptability
to women. In addition, heat exposure of these vitamins
during the brewing of tea was far less intense when
compared that during breadmaking using flour forti-
cified with both vitamins, as reported by Winkels et al.44
For example, despite exposure to ~500°C for ~45 min
(during breadmaking) followed by autoclaving—at
119°C for 15 min to extract vitamins from bread prior to
analysis)—which led to only a 25% net loss of both vita-
mins,44 consumption of three slices of bread daily led to
a significant improvement in the status of both vitamins
among healthy older people. In a similar vein, both vita-
mins were stable during the brewing of tea using vitamin-
fortified teabags because daily consumption of tea
fortified with 1 mg of folate per cup over 2 months signifi-
cantly improved serum folate levels in 34 of 36 women; by
contrast, there was an insufficiently meaningful change
in the serum folate of women consuming mock-fortified
tea. Moreover, among women using teabags spiked with
0.1 mg and 0.5 mg of vitamin B₁₂ per cup, over one-half
and two-thirds of women, respectively, increased their
serum vitamin B₁₂ levels well into the normal range.

Of clinical significance, the post-interventional improve-
ment of serum folate and serum vitamin B₁₂ levels in
these women coincided with a statistically significant mean
increase of their haemoglobin concentration when
compared with pre-interventional levels. Therefore, it
is reasonable to conclude that despite the likelihood of
iron deficiency being present in this cohort, (i) many of
these women had an element of folate deficiency and/or
vitamin B₁₂ deficiency related anaemia before interven-
tion with folate-fortified and vitamin B₁₂-fortified tea, and
(ii) the post-intervention improvement in haemoglobin
with reversal of anaemia in these women reflected a clini-
cal response to tea-fortified with folate and vitamin B₁₂.1
Thus, vitamin-fortified tea appears to be an efficacious
vehicle for rapid replenishment of folate and vitamin B₁₂
among young Indian women of childbearing-age.

Limitations of the study

This first-of-its-kind preliminary study,36 had several
inherent and significant limitations that precluded it from
rising to the level of a formal randomised controlled pilot
trial.49 These limitations stem primarily from a lack of
prior data on the use of fortified tea in raising the serum
folate and vitamin B₁₂ in humans, which led to insuffi-
cient preliminary data to calculate sample size; there was
also a paucity in the number of control subjects; and a
failure in assessment of the haemoglobin concentration
in all control and experimental subjects.

A deliberate reduction in the number of control subjects
recruited (when compared with experimental subjects)
was strengthened by our finding of a high prevalence of
low serum folate and serum vitamin B₁₂ level among 60
young nursing students in Sangli (online supplemental
figure S1), most of whom consumed a cup of tea every
day. This suggested that there was an insufficient amount of folate
and vitamin B₁₂ in a daily cup of unfortified (or mock-
fortified) tea to meaningfully raise the serum folate and
vitamin B₁₂ levels (in a control cohort) within 2 months.
Therefore, because this was the very first preliminary
study that was primarily aimed at testing the feasibility,
efficacy and acceptability of vitamin-fortified tea, we opt
ed to reduce the number of control subjects, and primarily
focused on pre-intervention versus post-intervention
values of both serum vitamins and the haemoglobin
concentration. Parenthetically, post hoc analysis of the
results and estimates of the group differences in serum
folate levels indicated that the sample size required to
detect difference in folate levels would be a minimum of
13 per group; this estimate is not too dissimilar from
the number of subjects used in the present study.

Although we used an accurate Eppendorf pipette
(conventionally used in biochemical studies) to manually
add precise quantities of folate and vitamin B₁₂ to each teabag, we did not measure the precise amount of residual folate and vitamin B₁₂ released into the final cup of tea; future studies will need to examine this issue more directly. Nevertheless, the fact that the experimental group showed a significant improvement in serum folate and serum vitamin B₁₂ levels after 60 days of daily consumption of tea suggested that sufficient functionally intact vitamins released from vitamin-fortified teabags were well absorbed. Moreover, the concomitant significant post-interventional rise in haemoglobin concentration in this experimental group (when compared with pre-intervention levels) further point to the functional clinical effects of these absorbed vitamins in stimulating erythropoiesis and resolving anaemia among many of these Indian women.

Future studies

The results of our preliminary studies, which favour proof-of-concept, points to the use of tea as a potentially ideal vehicle for fortification with these vitamins in India. Vitamin-fortified tea can potentially be used in India in two ways: (i) For the delivery of vitamin-fortified tea that contains a full daily therapeutic replacement dose of folate and vitamin B₁₂ that is specifically designed to rapidly replenish all those with either borderline low folate/vitamin B₁₂ status or frank deficiency of these vitamins. By inference, the success of this approach predicts that (ii) fortification of tea with lower (maintenance) doses of folate and vitamin B₁₂ can subsequently be used to ensure that those hundreds of millions who subsist on an insufficiently balanced diet (containing an inadequate amount of these micronutrients) can still receive an adequate replacement of these vitamins every day.

Therefore, the immediate challenge is to initiate formal randomised controlled trials in Indian women of childbearing-age with borderline deficiency of these vitamins to answer several inter-related issues: (1) Studies are needed to optimise the precise dose (and duration) of vitamin-fortified tea needed for rapid therapeutic replacement of vitamin B₁₂ and folate; and (2), to determine the precise maintenance dose of vitamins to be added to vitamin-fortified tea to compensate for ongoing insufficient dietary intake of these vitamins. Moreover, because the majority of the Indian population use ‘loose tea leaves’ to prepare tea rather than teabags, (3), additional trials will need to compare the relative efficacy of using vitamin-fortified teabags versus vitamin-fortified loose tea leaves. Finally, although initial trials will be conducted among urban women professionals, (4), it will be imperative to define if equivalent results are achieved among rural women living in remote villages within Sangli district, who represent the majority of women living in villages throughout India. Studies to test each of these approaches to replenish folate and vitamin B₁₂ in women using vitamin-fortified tea are in the planning stages.

Some considerations related to the introduction of folate- and vitamin B₁₂-fortified tea in India

Several novel and positive attributes to the use of tea as a vehicle for fortification in India are summarised in the box below. However, some issues and concerns related to the potential widespread introduction of vitamin-fortified tea warrant additional discussion.

(1) The Government of India has a programme that is intended to improve the iron and folate status of women of childbearing age by providing weekly supplements containing a combination of iron-folic acid tablets.

Box 1 Unique characteristics of tea as an excellent vehicle for fortification with folate and vitamin B₁₂ in India

- Tea is grown in the highlands of only 4 of 28 states in India from where it is efficiently distributed to reach people of every geographical location and every socio-economic group throughout India.
- Tea is a cheap beverage consumed every day by most Indian adults and is also easily affordable by the poor.
- India generates over 1200 million kilograms of tea annually from Assam (Assam Tea), ~25% from West Bengal (Darjeeling Tea), ~15% from Tamil Nadu (Nilgiri Tea) and <5% from Kerala (Munnar Tea).
- All major tea companies in India have centralised tea producing factories close to large tea-plantations where tea can be fortified.
- Fortification of tea with folic acid and vitamin B₁₂ can be carried out during the penultimate step of the processing of tea, just prior to drying and packaging.
- Once fortified, the dried tea leaves retain the folate and vitamin B₁₂ which finely coats these tea leaves.
- Loose tea is usually stored in closed tin or cardboard box containers, so fortified tea is protected from direct sunlight (which can be detrimental to the stability of folate and vitamin B₁₂).
- Folate- and vitamin B₁₂-fortified tea is stable to storage at room temperature for extended periods.
- Folate and vitamin B₁₂ are both water-soluble, resistant to the near-boiling hot water used in brewing tea, so the entire dose is immediately delivered into infused tea.
- Excess folate or vitamin B₁₂ consumed in tea is excreted from the body in urine and stool.
- Both vitamins are non-toxic with no upper intake level for folate or any upper limit for vitamin B₁₂.
- Neither the taste nor color of the tea are affected by added folate and vitamin B₁₂.
- Addition of folate or vitamin B₁₂ as therapeutic agents to tea are in keeping with the Food Safety Standards Authority of India (FSSAI) regulations for nutraceuticals and the spirit of the FSSAI Joint Declaration to identify additional vehicles for fortification.
- Clinical trials in various populations need to be carried out to identify the therapeutic dose of folate and vitamin B₁₂ required to fully replenish a deficiency rapidly among various populations at risk.
- After subjects are fully replenished, additional clinical trials will need to identify the minimal fortification dose of folate-fortified and vitamin B₁₂-fortified tea required for long-term supplementation of the diet.
- Folate and vitamin B₁₂ are relatively inexpensive vitamins so fortification of tea ought not to significantly raise the price of tea.
- Costs arising from fortification of tea with folate and vitamin B₁₂ by major tea companies in India can be attributed to their Government of India-mandated expenditures in ‘Corporate Social Responsibility’.

This has not been a clinical concern for either folate or containing vitamins (in this case, tea) is taken in excess. The potential for inadvertent vitamin toxicity if the vehicle fortified food with vitamins necessarily raises questions on the fortification of tea per se is unlikely to alter the unanimous hot beverage of choice throughout India. But this is usually well past the time when developmental decisions have been made regarding closure of the fetal neural tube (which occurs by the end of the fourth week after conception). Therefore, if these women have had a persistent low folate status in the periconceptional period, this fact alone increases the risk for failure in closure of the neural tube in the fetus, thereby resulting in a baby with a NTD. By contrast, the daily consumption of vitamin-fortified tea has potential to improve the periconceptional folate and vitamin B12 status among women of childbearing age, which can markedly reduce the risk of having a baby with a NTD. Importantly, this positive outcome with vitamin-fortified tea can easily be achieved without side effects and minimal effort on the part of women, since consumption of a cup of tea is an intrinsic part of their daily diet. Another issue that has not been sufficiently considered by the Government of India programme of supplementation of iron-folate to women of childbearing age is that merely administering folic acid (with iron) in the face of ongoing depleted or deficient vitamin B12 cannot possibly help fully restore folate metabolism to normal. This shortcoming can also be resolved by the introduction of folate-fortified and vitamin B12-fortified tea in India.

In general, fortification of foods (milk with vitamin D, or flour with folate) has not led to increased consumption of these foods. In this context, because a large percent of the population in India has a low folate and vitamin B12 status, there will necessarily need to be two strengths of vitamin-fortified tea: one fortified with a higher dose of both vitamins for rapid replenishment of depleted or deficient stores, and another fortified with a lower dose of vitamins for long-term maintenance of optimum folate and vitamin B12 status to compensate for a diet that is persistently low in folate and vitamin B12 content. Finally, it should be noted that even though tea is well known to interfere with iron absorption, this attribute has not altered the fact that a cup of tea remains the unanimous hot beverage of choice throughout India. Thus, the fortification of tea per se is unlikely to alter the consumption of tea in India.

Nevertheless, widespread availability of any fortified food with vitamins necessarily raises questions on the potential for inadvertent vitamin toxicity if the vehicle containing vitamins (in this case, tea) is taken in excess. This has not been a clinical concern for either folate or vitamin B12 because any excess vitamin consumed in tea is easily excreted from the body in urine and stool. A recent paper points to the lack of any scientific basis for setting any upper intake level for folate.51 As also noted recently in the 2020-updated National Institute of Health (USA) Office of Dietary Supplements’ Fact Sheet for Health Professionals: ‘The Food and Nutrition Board did not establish an upper limit for vitamin B12 because of its low potential for toxicity.52 Even at large doses, vitamin B12 is generally considered to be safe because the body does not store excess amounts.' Thus, there appears to be no issue of concern related to a tolerable upper intake level for vitamin B12 in the USA (since 1998,53) with no significant potential limitations to the concept of fortification of tea with either folate and vitamin B12 in India.

Finally, both folate and vitamin B12 are relatively inexpensive vitamins, so fortification of tea ought not to significantly raise its price. In addition, the added costs that arise from fortification of tea with folate and vitamin B12 by major tea companies in India can be attributed to their Government of India-mandated expenditures in ‘Corporate Social Responsibility’.54

Potential beneficial effects of folate-fortified and vitamin B12-fortified tea on target Indian populations at various stages of life

There is a large body of evidence that Indians at various stages of life—such as women of childbearing age, the mother-fetus dyad throughout pregnancy and later in post-natal life, as well as children, adolescents and both adult and elderly men and women—can potentially benefit from the use of vitamin-fortified tea. For example:

1. Based on an estimated 26 million births annually in India, and using a very conservative prevalence of five cases of NTDs per 1000 live births, Kancherla and Oakley estimate that 90% of the 130 000 cases of NTDs each year can be prevented by a robust food folate-fortification programme that ensures periconceptional folate supplements to women in India. (This estimate does not take into account the additional potential prevention of severe cases of NTDs that can also present as stillbirths).

Of additional significance, and following directly on our earlier studies in mice, several studies have consistently pointed to observations in humans that lower maternal folate status in early pregnancy is associated with psychological–neuropsychiatric disorders that present in childhood. Affected children can exhibit hyperactivity or inattention and peer problems, aggressive behaviour, learning deficits, anxiety and/ or depression. Conversely, women with replete folate stores during early pregnancy provide an in utero environment for optimum neurodevelopment that impacts positively on the child’s intellect, emotional intelligence, cognition, language and academic performance. Thus, consumption of a daily cup of tea that is fortified with folate and vitamin B12 by all Indian women of childbearing-age and throughout pregnancy has the potential to dramatically improve the overall outlook of millions of their children each year.
(2) Indian children born to micronutrient-depleted mothers have a high propensity to have a low folate and vitamin B₁₂ status from birth through childhood and adolescence, which contributes to poor growth and compromised optimum intellectual development, and gross motor and problem-solving skills. In Sangli, children 10 years of age onwards are fed a daily cup of tea (Personal Communication: Ms Lata Deshpande of Dr Deshpande Bal Vidya Mandir, Sangli); so, giving them a daily cup of vitamin-fortified tea has the potential to prevent some of these serious deficits among such children at risk.

(3) Adult Indian men also have a high incidence of vitamin B₁₂ deficiency; thus, despite being vegetarians or professed non-vegetarians, from among 204 men and women (aged 27–55 years), 47% had serum levels consistent with vitamin B₁₂ deficiency. Another study showed 67% of men of the middle and lower socio-economic strata had low vitamin B₁₂ concentrations. The fact that many such women with vitamin B₁₂ deficiency in this region were unable to normalise their elevated homocysteine levels after vitamin B₁₂ administration and serum folate is falsely elevated in those with vitamin B₁₂ deficiency, all suggested that the extent of folate deficiency has been underestimated. Hence, consumption of tea fortified with folate and vitamin B₁₂ can also benefit Indian men.

(4) Finally, among the middle-aged and elderly, chronic hyperhomocysteinaemia (which is largely due to longstanding vitamin B₁₂ and/or folate insufficiency) is a major risk factor in occlusive vascular diseases—particularly increased small-vessel cerebrovascular disease–related strokes, dementia and Alzheimer disease. And accelerated brain atrophy is often a characteristic among those with mild cognitive impairment who then go on to develop Alzheimer disease. There are now three randomised controlled trials among elderly patients to suggest that homocysteine-lowering therapy can significantly slow down the accelerated rate of brain atrophy and improve cognition. Indeed, a recent consensus statement by a panel of experts have concluded that elevated plasma total homocysteine is a modifiable risk factor for development of cognitive decline, dementia and Alzheimer disease in older persons. Collectively this information and the availability of a common ‘food’ (tea) to fortify with folate and vitamin B₁₂ as well as provision of early ‘proof of concept’, should be sufficient impetus for the Indian Ministry of Health to support projects designed to expand the population target for optimisation of folate and vitamin B₁₂ status to also include middle-aged and elderly Indians.

Taken together, consumption of folate-fortified and vitamin B₁₂-fortified tea in India can potentially have very significant health benefits across several stages of life.

Potential application of folate-fortified and/or vitamin B₁₂-fortified teabags for Western countries

Fortification of teabags with vitamin B₁₂ alone can also have utility among several groups in the West who are at-risk for vitamin B₁₂ deficiency, particularly in regions where folate-fortification of flour is mandated. In USA, this includes between 20%–30% elderly with food-vitamin B₁₂ malabsorption, some diabetics on metformin and approximately 8 million vegetarians. Estimates that nearly one-half of Americans consume tea every day, suggests that fortification of teabags with vitamin B₁₂ can reach a large number. In addition, voluntary fortification appears ineffective to maintain optimum vitamin B₁₂ and folate nutrition of older Irish adults where the prevalence of deficient or low vitamin B₁₂ status (less than 185 pmol/L) was 12%, whereas the prevalence of deficient or low folate status was 15%. Since tea is a popular daily drink in Ireland and many other countries where flour-fortification with folate is not mandated, folate-fortified and vitamin B₁₂-fortified tea could be an available option for those at-risk for these deficiencies in such populations.

Finally, it should be pointed out that oral administration of full therapeutic daily doses of vitamin B₁₂ is now standard therapy for food-vitamin B₁₂ malabsorption as well as pernicious anaemia, therefore, tea-fortified with vitamin B₁₂ can be tested for use in these conditions as a substitute for daily tablets.

Scope of vitamin-fortification of tea worldwide

Consumption of a daily cup of tea is common practice all over the world. It is therefore not an insignificant fact that there exist studies which document a deficiency of folate and vitamin B₁₂ in in each of the top-10 tea producing countries. Therefore, widespread adoption of tea-fortified with folate and vitamin B₁₂ in these countries can further benefit their resident adolescents and adult populations. Although China tops the list producing over 2 million tons, with India (~1.2 million tons) as the next largest producer, Kenya (~430 000 tons), Sri Lanka (~340 000 tons) and Vietnam (~214 000 tons) are large producers and exporters of tea. Other top-10 tea producers include (in descending order) Turkey, Indonesia, Myanmar, Iran and Bangladesh. Thus, our preliminary studies documenting the efficacy of vitamin-fortified tea to rapidly replenish depleted stores in Indian women also points to the potential for reversing nutritional folate deficiency and vitamin B₁₂ deficiency in these countries using this vehicle.

In conclusion, tea has several positive attributes as a scalable, contextually-appropriate, centrally-processed, affordable, widely distributed and outstanding food-based vehicle for fortification with folate and vitamin B₁₂ in India (and other tea-consuming nations). Our preliminary study suggests that vitamin-fortified tea is acceptable, feasible and efficacious in improving the low folate and vitamin B₁₂ status of Indian women of childbearing age. This warrants additional study with several
formal randomised clinical trials, as discussed above, because confirmation and successful implementation of a programme for the fortification of tea with folate and vitamin B12 has potential to dramatically improve the lives of hundreds of millions of Indians every year.

Author affiliations
1Department of Paediatric Surgery, Paediatric Surgery Centre & Post-Graduate Institute, Implementing The Lancet Commission on Global Surgery in India, Sangli, Maharashtra, India
2Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
3Department of Paediatric Surgery, Paediatric Surgery Centre & Post-Graduate Institute, Sangli, Maharashtra, India
4Department of Paediatric Surgery, Lilavati Hospital and Research Centre, Mumbai, Maharashtra, India
5Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA

Acknowledgements We thank Ms Neelam R Chand and Ms Maya K Murthy (Indianapolis, USA) who enthusiastically participated in the first set of blinded taste tests using various folic acid and vitamin B12 preparations. We also thank Dr Utpal P Dave of Indiana University School of Medicine for critical review of an early draft of the manuscript. The support and assistance of Mr Nitin B Shah and Dr Sanjyot S Patil (Manavrahat Charitable Trust), Drs Sharad T and Rohini S Ghatage (Ghatage Multispecialty Hospital and Post-Graduate Institute), Principals Smt Neha Awale and Dr Jaykumar Bhanuse (RR Patil College of Nursing Education and College of Homeopathy), Principal Ms MV Kagalkar and Dr SA Kulkoli (Kulkoli Institute of Nursing Sciences), Ms Kovita S Bhosale and Staff (Ghodawat Diagnostic Centre Pathology Laboratory) and Mr Dileep Shah (Maharashtra Tea Depot)—all from Sangli—in various facets of this study, is gratefully acknowledged.

Contributors RMV developed, designed and facilitated the study, recruited subjects, prepared vitamin-fortified tea, coordinated blood testing of subjects, collected and compiled data, revised the paper and was responsible for study oversight. MJA prepared figures, analysed the data and performed statistical analysis. AD2 prepared vitamin-fortified tea, recruited subjects and helped collect data. MSS prepared vitamin-fortified tea, recruited subjects and helped collect data. SJK developed, designed and facilitated the study, recruited subjects and helped collect data. ACA conceived, developed, designed and facilitated the study, prepared vitamin-fortified tea, analysed data, wrote the paper and is primarily responsible for the final content of the paper.

Funding This study was supported in large part by funds from the Manavrahat Charitable Trust, Sangli, Maharashtra, India.

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval The Ethics Committees of the Kulkoli Institute of Nursing Sciences, the RR Patil College of Nursing Education and College of Homeopathy, as well as the Board of Trustees of Kulkoli Charitable Trust, Tatyasheb Ghatage Charitable Trust and Manavrahat Charitable Trust, all from Sangli, India, approved this study.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information. Data relevant to the study are included in the article.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any errors or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES

76 Siekmann JH, Allen LH, Bwibo NO, et al. Kenyan school children have multiple micronutrient deficiencies, but increased plasma vitamin B–12 is the only detectable micronutrient response to meat or milk supplementation. *J Nutr* 2003;133:3972S–80.
Fortifying tea with folate and vitamin B12 may help counter serious health issues in Indian women

High levels of anaemia and neural tube defects linked to these nutritional deficiencies

Fortifying tea with folate and vitamin B12 may help counter the high levels of anaemia and neural tube defects associated with these widespread nutritional deficiencies in Indian women, suggest preliminary findings, published in the online journal *BMJ Nutrition Prevention & Health*.

Most women of childbearing age in India eat a poorly balanced diet, resulting in chronic folate and vitamin B12 deficiencies.

Although many countries have successfully fortified flour with folate nationally to ward off neural tube defects, logistical issues make this strategy difficult to implement in India.

This is because around 70% of the population lives in over 650,000 rural villages, where cereal grain is more often grown, milled, and purchased locally. And diets vary considerably according to cultural, religious, and ethnic differences and beliefs.

Besides water, tea is the most common beverage drunk in India. It’s cheap, and is largely grown and processed in the highlands of only 4 states: Assam, West Bengal, Tamil Nadu and Kerala.

A single daily cup might therefore provide an ideal vehicle for fortification with these water-soluble vitamins, the study authors thought.

To test this out, they divided 43 young women (average age 20) from Sangli in the state of Maharashtra into three groups.

The women were asked to use teabags laced with therapeutic doses of 1 mg folate plus either 0.1 mg vitamin B12 (group 1; 19 women) or 0.5 mg vitamin B12 (group 2, 19 women), or to use unfortified teabags (group 0, 5 women) in a daily cup of tea for 2 months.

Their serum vitamin and haemoglobin levels were compared at the beginning and end of the study period.

Most women had anaemia with low to normal serum folate and below normal serum vitamin B12 levels at the start of the study.

After 2 months, there were significant average increases in serum folate levels of 8.37 ng/ml and 6.69 ng/ml in groups 1 and 2, respectively, compared with a rise of 1.26 ng/ml among the women in group 0.

Serum vitamin B12 levels rose to more than 300 pg/ml in more than half of the women in group 1 and in two thirds of those in group 2. Average haemoglobin levels also rose by 1.45 g/dl in group 1 and by 0.79 g/dl in group 2.

This is a feasibility study, involving small numbers of participants, so larger comparative studies would be needed before any firm conclusions could be drawn, say the study authors.
But they suggest that fortified tea could potentially be used in India in two ways: as a daily therapeutic dose of folate and vitamin B12 for all those with either borderline or low folate/vitamin B12 levels; as a lower (maintenance) dose to ensure the hundreds of millions who subsist on a nutritionally poor diet can still get these two nutrients every day.

And they conclude: “Tea is an outstanding scalable vehicle for fortification with folate and vitamin B12 in India, and has the potential to help eliminate haematological and neurological complications arising from inadequate dietary consumption or absorption of folate and vitamin B12.”
SUPPLEMENTAL MATERIAL

Potential for Elimination of Folate and Vitamin-B_{12} Deficiency in India Using Vitamin-Fortified Tea—A Preliminary Study

Ravindra M. Vora, FRCS(Edin), Meryl J. Alappattu, PhD, Apoorva D. Zarkar, MBBS, Mayur S. Soni, MBBS, Santosh J. Karmarkar, MCh, and Aśok C. Antony, MD, MACP

SUPPLEMENTAL METHODS

Blood Tests. Women between 18- to 25-years from the Kulloli Institute of Nursing Sciences, Sangli, with no medical history of illness in the past 6-months, who were not consuming iron or multivitamins and were not pregnant, were invited to help us assess their baseline folate and vitamin-B_{12} status \((n=60) \). Venous blood was drawn from these women at the Ghodawat Diagnostic Center, Sangli, to assess basal serum folate and vitamin-B_{12} levels. Of 5-mL drawn from each woman, 1-mL was sent for a complete blood count at the Ghodawat Diagnostic Center and the remainder processed for measurement of serum folate and vitamin-B_{12}. Following separation of serum within 1-hour of blood collection, samples were kept chilled in ice-packs during courier transport to the Thyrocare Laboratory, Navi Mumbai, where analysis of serum folate and vitamin-B_{12} levels was performed within 1-day of receipt using a chemiluminescence immunoassay. Normal values for serum folate from this laboratory was over 5.4-ng/ml \([\text{coefficient of variation (CV)} <10\%]\); the reference range for normal vitamin-B_{12} was 211- to 911-pg/ml \([\text{intra-assay (CV)} 4\%, \text{inter-assay (CV)} 4.4\%]\).

SUPPLEMENTAL RESULTS

Preliminary data on preferences of Indian women of childbearing age. While conducting several educational lectures on the importance of optimizing nutrition among scores of young Indian women attending undergraduate colleges in several states in the North (Punjab), West (Maharashtra), East (Uttar Pradesh and Bihar), and South India (Kerala and Tamil Nadu), we also carried out informal focus group assessments on their propensity to regularly take iron-vitamin supplements. Most complained of having experienced side effects of abdominal discomfort, nausea, bloating, constipation, diarrhea, which are in large part the side effects of oral iron. As a result, the vast majority of these women uniformly expressed a strong aversion and resistance to taking daily supplements of vitamins in tablet form, despite being educated on the potential adverse risks of low folate and vitamin-B_{12} deficiency to their future progeny. However, they unanimously and enthusiastically voiced preference for a food-based approach from within their extant diet to supplement their low dietary intake of folate and vitamin-B_{12} (Unpublished Observations).

Dissolution of the vitamins, camouflage and organoleptic assessment of vitamins dissolved in brewed tea. Both pure USP-grade folic acid (yellow color) and vitamin-B_{12} (brilliant red color) are stable for several months at room temperature when protected from light, and are water soluble. Organoleptic testing of folate and vitamin-B_{12} dissolved in water was informally assessed in the USA among women of Indian origin; when diluted to final concentrations of 1- to 5-mg per cup of water, both pure folate and vitamin-B_{12} imparted a faint yellow and pink color, respectively, but were both tasteless in water, and did not impart any altered smell or taste to tea (with or without added milk and sugar). Following the addition of either 1-mg of folate or 1-mg vitamin-B_{12} (from
a stock solution dissolved in water) to a teabag, and drying, there was an immediate release of each of these colored vitamins from the teabag into a cup of room temperature water. This predicted that both vitamins would likewise be readily released from teabags during the brewing of hot tea. Moreover, addition of 1-mg of folate and vitamin-B\textsubscript{12} to a teabag steeped in hot water for 2-5 minutes was easily camouflaged in the amber-reddish colored brewed tea. Similar studies using golden-yellow and super-red food coloring agents [for mock-fortified tea] led to similar results as observed with the vitamins. Thus, fortification of tea with either vitamins or food coloring agents led to no adverse organoleptic effects to brewed tea. These findings predicted that upon daily consumption of folate- and vitamin-B\textsubscript{12}-fortified tea, most women with low folate and vitamin-B\textsubscript{12} status would respond with a measurable rise in their serum vitamin levels; indeed, the results observed among women in the experimental arm (Main Document), supported these assumptions.

Distribution of low folate and vitamin-B\textsubscript{12} status among women of childbearing-age in Sangli:

As shown in **Supplemental Figure S1A**, 48 of 60 (80%) nursing students of the Kulloli Institute of Nursing Sciences (Sangli) had serum folate levels consistent with frank folate deficiency (less than 5.4 ng/ml, when measured at Thyrocare Lab, Navi Mumbai). There were an additional 9 of 60 women with serum folate levels in the low-normal range (between 5.4- to 7-ng/ml). Thus, a full 57 of 60 (95%) of these women had low-folate status (less than 7-ng/ml). In addition, **Supplemental Figure 1B** revealed that 14 of 60 (23%) women had serum levels of vitamin-B\textsubscript{12} consistent with frank vitamin-B\textsubscript{12} deficiency (less than 211-pg/ml, when also measured at Thyrocare Lab). An additional 24 of 60 women had vitamin-B\textsubscript{12} levels in the low-normal range (between 211- to 300-pg/ml). These data indicated that 38 of the 60 women studied (63%) had low-vitamin-B\textsubscript{12} status.

Supplemental Figure S1. Distribution of the baseline concentration of serum folate (Panel A, left) and serum vitamin-B\textsubscript{12} (Panel B, right) among 60 women of childbearing-age in Sangli (average age = 22 \pm 3 SD). Blood samples were assayed for serum folate and vitamin-B\textsubscript{12} at Thyrocare Lab (Navi Mumbai). The serum folate and vitamin-B\textsubscript{12} levels for each subject along the horizontal axes are coincident when viewed from left to right. The horizontal dashed line across the left panel (----) depicts the cut-off level of 5.4-ng/mL, below which the serum folate level in any subject is consistent with frank folate deficiency. The horizontal dashed line across the right panel (----) depicts the cut-off level of 211-pg/mL, below which the serum vitamin-B\textsubscript{12} level in any subject is consistent with frank vitamin-B\textsubscript{12} deficiency.