Abstracts

Abstract 16 Table 1 Suggestions to minimise weight bias and stigma (n=83)

<table>
<thead>
<tr>
<th>Comments relevant to minimizing weight bias & stigma</th>
<th>n=59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treat individuals with obesity with respect & kindness. Show empathy</td>
<td>38 (64%)</td>
</tr>
<tr>
<td>Use ‘Person-first Language’</td>
<td>11 (19%)</td>
</tr>
<tr>
<td>Promote education regarding consequences of weight bias/stigma</td>
<td>2 (3%)</td>
</tr>
<tr>
<td>Judge less & understand obesity is a complex disease that requires various forms of treatment</td>
<td>7 (12%)</td>
</tr>
<tr>
<td>Find a balance between ‘body confidence & glorifying a disease’</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Comments related to body acceptance initiative</td>
<td>n=24</td>
</tr>
<tr>
<td>‘Love your body’</td>
<td>14 (58%)</td>
</tr>
<tr>
<td>‘Accept that everyone comes in different sizes’</td>
<td>10 (42%)</td>
</tr>
</tbody>
</table>

Conclusions

Verified through their interaction and comments with the volunteers who had active public websites and Instagram accounts were identified through a key word search on popular search engines: Yahoo! Google, and Bing who had active public websites and Instagram accounts were included. ‘Tips to Spot Misinformation’ developed for the public by the Dietitians of Canada and PEN: Evidence-Based Nutrition were used to create a credibility score for each website. Based on scores, websites were categorized as having low, moderate, or high credibility. The reach of each influencer was ascertained by combining the total number of followers/subscribers from five popular social media platforms (Instagram, Facebook, Twitter, YouTube, and Pinterest).

Results

Of the 39 websites, there were 12 (31%) high, 13 (33%) moderate, and 14 (36%) low credibility sites, and the average number of followers for each group were 186,775, 547,088 and 2,153,515, respectively. There was a significant difference in followers between the three groups (p = 0.017) and a significantly lower number of followers for influencers with high credibility websites compared to low credibility websites (p = 0.022), with more than 10 times fewer followers.

Discussion

Popular influencers with low credibility websites have enormous reach whereas influencers with highly credible websites lack the ability to reach large segments of the population. Further research is needed to understand how social validation influences the public’s eating behaviors and to identify strategies that will increase the visibility of highly credible information.

REFERENCES

CREDIBILITY AND REACH OF NUTRITION INFLUENCERS ON SOCIAL MEDIA

Objective To examine the credibility of nutrition influencers’ websites in relation to their social media reach.

Methods Nutrition influencers identified through a key word search on popular search engines: Yahoo! Google, and Bing who had active public websites and Instagram accounts were included. ‘Tips to Spot Misinformation’ developed for the public by the Dietitians of Canada and PEN: Evidence-Based Nutrition were used to create a credibility score for each website. Based on scores, websites were categorized as having low, moderate, or high credibility. The reach of each influencer was ascertained by combining the total number of followers/subscribers from five popular social media platforms (Instagram, Facebook, Twitter, YouTube, and Pinterest).

Results Of the 39 websites, there were 12 (31%) high, 13 (33%) moderate, and 14 (36%) low credibility sites, and the average number of followers for each group were 186,775, 547,088 and 2,153,515, respectively. There was a significant difference in followers between the three groups (p = 0.017) and a significantly lower number of followers for influencers with high credibility websites compared to low credibility websites (p = 0.022), with more than 10 times fewer followers.

Discussion Popular influencers with low credibility websites have enormous reach whereas influencers with highly credible websites lack the ability to reach large segments of the population. Further research is needed to understand how social validation influences the public’s eating behaviors and to identify strategies that will increase the visibility of highly credible information.

BACKGROUND

The COVID-19 pandemic has impacted the nutrition and health of individuals, households, and populations globally. Through exposing fragilities in food, health, and social welfare systems, the negative influence of COVID-19 continues to affect the global burden of malnutrition. The nature and scale of these impacts are not yet well understood thus the body of evidence for informing policy is limited. Collating and monitoring relevant data in real-time from multiple levels, sectors and sources is essential in preparing and responding to the ongoing COVID-19 pandemic.

OBJECTIVES

To identify key data sources related to food, nutrition, and health indicators in the context of the COVID-19 pandemic.

METHODS

A COVID-19, food, nutrition and health framework was developed through multiple iterative rounds of online multidisciplinary discussions including the NNEEdPro COVID-19 taskforce and the Swiss Re Institute’s Republic of Science, which comprised researchers and clinicians with expertise in data science, food, nutrition, and health.

RESULTS

The proposed framework encompasses five socio-ecological levels which were further sub-divided by six categories of the food and nutrition ecosystem, including food production & supply, food environment & access, food choices & dietary patterns, nutritional status & comorbidities, health & disease outcomes, health & nutrition services. A limited number of exemplar variables for the assessment of global status

Abstracts