Advances in digital technologies impact several aspects of nutrition and healthcare science and practice. During the COVID-19 pandemic, the NNEdPro Nutrition and COVID-19 task force, supported by the BMJ Nutrition Prevention and Healthcare Science, London, UK; World Health Organisation, Geneva, Switzerland; Diabetes Digital Media, Coventry, UK; Swiss Re Institute, Zurich, Switzerland; School of Health Sciences, University of New South Wales, Sydney, Australia; School of Public Health, The University of Queensland, Brisbane, Australia; Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Nutrиск, UK; Culinary Medicine, UK; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada; Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Department of Nutrition, University of North Carolina Chapel Hill, Chapel Hill, USA; United Arab Emirates Genetics Diseases Association, Dubai, UAE; My Pedia Clinic, Dubai, UAE; International Center for Biosaline Agriculture, Dubai, UAE; Faculty of Applied Medical Sciences, Tbilasw University, Al Madinah Al Munawwarah, Saudi Arabia; School of Biomedical Sciences, Ulster University at Coleraine, Coleraine, UK; Education and Research in Medical Nutrition Network (ERIMN), Brighton, UK; School of Humanities and Social Sciences, University of Cambridge, Cambridge, UK.

10.1136/bmjnph-2023-nnedprosummit2022.1

Modern food systems operate on a global scale, and many countries depend on imported food to feed their populations. Perhaps one of the more tangible examples of digital technology empowering healthcare practice is the proliferation of digital smart phone apps, particularly as tools in the management of chronic health conditions. Diet and lifestyle management support apps have entered the chronic disease management space. Some that utilise artificial intelligence are in development, and in some cases in clinical trials, and clinical practice. One such app designed by Diabetes Digital Media has been integrated into some NHS weight management services in the UK. These technologies aim to better understand behaviour and lifestyle change, improve patient engagement and the sustainability of lifestyle changes, and allow granular data collection and remote monitoring of outcome variables.

In developed countries, digital data platforms have been used to explore the intersection at which social determinants of health meet nutrition-related genomics and health outcomes. The challenge of severe health inequities relates closely to societal frictions and conflicts, economic market forces, and the health of education and food systems. To have the greatest impact on nutrition globally, digital technologies must account for and address health inequities that underlie the risk of malnutrition and poor health of millions of people. Furthermore, health systems do not operate in isolation. Empowering individuals and populations to live healthy lives requires a collective buy-in from the education sector. Therefore, at the Summit, several digitally-assisted educational schemes based in primary schools, community settings, medical schools, and healthcare systems in various global regions were showcased. Measuring and validating the safety and efficacy of novel digital technologies for better nutrition and health is essential for ensuring positive impacts.
The proportion of people eating according to their traditional dietary patterns is declining in most continents, with cheap ultra-processed foods becoming more easily available and infiltrating the food chains of even the hardest-to-reach corners of the world. At the same time, intensive farming methods, inequities in food distribution, and the high rate of food wastage raise concerns about the sustainability and environmental impact of food production at the scale required to feed the globe. International shocks such as the COVID-19 pandemic and regional conflicts have a palpable effect on food production, storage and distribution and exacerbate many of these issues. For these reasons, food and nutrition insecurity is a major global concern.

At the 8th Summit, this sub-theme generated discussion on many of these issues, particularly their implications for nutrition and health. In some cases, digital technologies are being used to protect and enhance traditional farming and dietary practices. In India, we heard about the use of participatory film-making and a digital voice response system as tools to empower local communities to record and share traditional dietary knowledge and practices. On a larger scale, the use of blockchain technology for increasing transparency and traceability in the food chain could become commonplace. Other key discussions centred on how digital technologies are being harnessed to shape future food systems and how such shifts will depend upon the evolution of agriculture and ecology, human culture, education and communication, and the technologies that underpin and span these domains.

One of the NNEdPro’s flagship food-based projects is the Mobile Teaching Kitchen (MTK) initiative. First established in Indian slum communities, the MTK uses a microenterprise model to train local women to prepare nutritious traditional foods and, in turn, train others to do the same, thus providing education, employment and an income alongside potential health benefits. The 8th Summit included updates on the progress of this project. The MTK model is being replicated in Mexico and the USA, and strategies to utilise digital technology to magnify the impact of the model were explored. Other food-based initiatives such as ‘kid’s kitchens’, ‘digital kitchens’, and digital apps to assist individuals and families in choosing healthy food options were all initiatives that garnered further discussion.

Digital technologies can empower health and nutrition research but implementing them safely and effectively is a major challenge. Linking multiple datasets, such as administrative electronic health records plus biomarker data (from e.g. the UK Biobank) for health research is leading to novel insights into the biological mechanisms and social determinants of disease, and risk modelling. The quality of diet and nutrition data in such datasets, particularly from routinely collected administrative healthcare care is a key area for improvement that necessitates novel digital innovation in dietary assessment methods. Examples of technologies designed for this purpose that were showcased at the 8th Summit include the MyFood24 app for diet assessment, tracking and analysis (based in the UK), a Telegram Bot with food recognition capabilities (based in East and Central Asia), and GIBSONIFY for collecting quantitative dietary data (based in India). This sub-theme also included discussion on the burgeoning field of precision nutrition, using nutrigenetics, molecular determinants, and -omics to individualise nutrition advice. One example discussed was the work of ZOE, a company using large-scale biometrics and data science to investigate individualised responses to foods (PREDICT) to develop a machine learning based digital nutrition tool that individualises diet advice for users.

Crucially, to ensure their safe and effective implementation, such technologies should necessarily be subjected to practical validation in clinical and research settings using robust methods and with results reported in peer-reviewed publications. At the 8th Summit, key topics under this sub-theme included the practical, ethical, legal and regulatory issues involved in this process. Within this sector several actors are calling for these barriers to be minimised but the safety and quality assurances they were designed to ensure must be maintained. In Germany, for example, a mechanism (DiGA) has been developed to accelerate the regulatory approval process for digital health products into standard care.

Education remains a keystone in improving nutrition in clinical practice and research. Digital technologies have the potential to improve the quality and expand the reach of nutrition education. For example, NNEdPro members in Australia and Asia have been developing nutrition education frameworks for healthcare professionals, and online educational platforms to deliver teaching. In Portugal, PLATE is a digital, school-based food literacy program that utilises gamification to encourage healthy diets and prevent adolescent obesity.