Supplemental Table 1 Baseline characteristics by gender among 2241 rural participants

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Men</th>
<th>Women</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of subjects</td>
<td>774</td>
<td>1467</td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td>49.5</td>
<td>47.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Schooling year >9 years, %</td>
<td>17.3</td>
<td>8.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Fortune index in rich, %</td>
<td>37.0</td>
<td>38.4</td>
<td>0.781</td>
</tr>
<tr>
<td>Current drinker, %</td>
<td>68.1</td>
<td>17.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Current smoker, %</td>
<td>66.3</td>
<td>0.9</td>
<td><0.001</td>
</tr>
<tr>
<td>Physical activity in high intensity, %</td>
<td>61.3</td>
<td>66.5</td>
<td>0.051</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>22.5</td>
<td>22.5</td>
<td>0.938</td>
</tr>
<tr>
<td>WC, cm</td>
<td>80.5</td>
<td>76.9</td>
<td><0.001</td>
</tr>
<tr>
<td>Food intake, g/d§</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grain</td>
<td>605.8</td>
<td>465</td>
<td><0.001</td>
</tr>
<tr>
<td>Red meat</td>
<td>33.3</td>
<td>21.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Vegetables</td>
<td>305.7</td>
<td>246.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Fruits</td>
<td>11.7</td>
<td>17.6</td>
<td>0.005</td>
</tr>
<tr>
<td>Nutrient intake§</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy, kcal/d</td>
<td>2054.2</td>
<td>1605.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Fat, g/d</td>
<td>73.6</td>
<td>66.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Protein, g/d</td>
<td>50.6</td>
<td>38.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Cholesterol, mg/d</td>
<td>167.7</td>
<td>133.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Sodium, mg/d</td>
<td>4982.2</td>
<td>4899.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Fiber, g/d</td>
<td>6.6</td>
<td>5.2</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Values were mean or %

* P value was assessed by t-test or Mann-Whitney U test for continuous variables and by chi-square test for categorical variables.

§ Adjusted for total calorie intake, except energy daily intake.
Supplemental Table 2. Estimated blood pressure changes (mmHg) with one SD increment of energy percentage from carbohydrate based on different multiple linear regression models a b

<table>
<thead>
<tr>
<th>Model</th>
<th>Male</th>
<th></th>
<th>Male</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β-estimates (95%CI)</td>
<td>P</td>
<td>β-estimates (95%CI)</td>
<td>P</td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>1.28(-0.02-2.57)</td>
<td>0.053</td>
<td>0.50(-0.19-1.19)</td>
<td>0.153</td>
</tr>
<tr>
<td>Model 2</td>
<td>0.61(-0.67-1.89)</td>
<td>0.353</td>
<td>0.39(-0.34-1.11)</td>
<td>0.298</td>
</tr>
<tr>
<td>Model 3</td>
<td>0.62(-0.63-1.88)</td>
<td>0.329</td>
<td>0.34(-0.37-1.06)</td>
<td>0.344</td>
</tr>
<tr>
<td>Model 4</td>
<td>0.96(-0.50-2.43)</td>
<td>0.196</td>
<td>0.43(-0.41-1.26)</td>
<td>0.316</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>2.17(1.19-3.14)</td>
<td><0.001</td>
<td>0.98(0.47-1.48)</td>
<td><0.001</td>
</tr>
<tr>
<td>Model 2</td>
<td>1.87(0.90-2.83)</td>
<td><0.001</td>
<td>1.13(0.59-1.66)</td>
<td><0.001</td>
</tr>
<tr>
<td>Model 3</td>
<td>1.86(0.92-2.81)</td>
<td><0.001</td>
<td>1.10(0.58-1.62)</td>
<td><0.001</td>
</tr>
<tr>
<td>Model 4</td>
<td>2.18(1.05-3.32)</td>
<td><0.001</td>
<td>1.31(0.69-1.94)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

* one SD of energy percentage from carbohydrate (% E) was 12.1% in male and 11.5% in female.

b Model adjustments: Model 1: adjusted for energy. Model 2: model 1 and further adjusted for age, education, fortune index and family history of hypertension. Model 3: model 2 and further adjusted for BMI, physical activity level, alcohol intake and smoke. Model 4: model 3 and further adjusted two nutrient principal components, protein and sodium intake.
Supplemental Table 3. Estimated blood pressure changes (mmHg) with additional 50g/d increment of carbohydrate intake based on different multiple linear regression models (N=2893) *

<table>
<thead>
<tr>
<th>Model</th>
<th>SBP β-estimates (95%CI)</th>
<th>P</th>
<th>DBP β-estimates (95%CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>1.85(0.64-3.06)</td>
<td>0.003</td>
<td>0.60(0.26-1.23)</td>
<td>0.060</td>
</tr>
<tr>
<td>Model 2</td>
<td>0.58(-0.60-1.77)</td>
<td>0.335</td>
<td>0.41(-0.24-1.05)</td>
<td>0.214</td>
</tr>
<tr>
<td>Model 3</td>
<td>0.56(-0.59-1.71)</td>
<td>0.336</td>
<td>0.39(-0.23-1.01)</td>
<td>0.222</td>
</tr>
<tr>
<td>Model 4</td>
<td>1.21(-0.10-2.15)</td>
<td>0.605</td>
<td>0.51(-0.17-1.09)</td>
<td>0.083</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>2.65(1.75-3.56)</td>
<td><0.001</td>
<td>1.00(0.56-1.44)</td>
<td><0.001</td>
</tr>
<tr>
<td>Model 2</td>
<td>1.37(0.53-2.21)</td>
<td>0.001</td>
<td>0.73(0.29-1.17)</td>
<td>0.001</td>
</tr>
<tr>
<td>Model 3</td>
<td>1.48(0.65-2.31)</td>
<td><0.001</td>
<td>0.078(0.33-1.20)</td>
<td>0.001</td>
</tr>
<tr>
<td>Model 4</td>
<td>2.12(1.16-3.08)</td>
<td><0.001</td>
<td>1.17(0.67-1.68)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*Model adjustments were consistent with **supplemental table 1**.