AUC | Best model on ROC curve | AUC | Best model on ROC curve | ||||
Sensitivity | Specificity | Sensitivity | Specificity | ||||
RF model1 | 0.719 | 0.714 | 0.617 | MLR model1 | 0.699* | 0.648 | 0.648 |
RF model2 | 0.716 | 0.608 | 0.720 | MLR model2 | 0.711 | 0.648 | 0.668 |
RF model3 | 0.743 | 0.607 | 0.778 | MLR model3 | 0.734 | 0.629 | 0.729 |
RF model4 | 0.864 | 0.804 | 0.823 | MLR model4 | 0.817* | 0.748 | 0.773 |
RF model5 | 0.940 | 0.870 | 0.898 | MLR model5 | 0.840* | 0.685 | 0.889 |
RF model6 | 0.967 | 0.929 | 0.877 | MLR model6 | 0.854* | 0.750 | 0.834 |
vrRF model1 | 0.606* | 0.467 | 0.685 | vrMLR model1 | 0.635* | 0.610 | 0.605 |
vrRF model2 | 0.602* | 0.516 | 0.632 | vrMLR model2 | 0.622* | 0.654 | 0.542 |
vrRF model3 | 0.638* | 0.541 | 0.671 | vrMLR model3 | 0.634* | 0.607 | 0.594 |
vrRF model4 | 0.796* | 0.594 | 0.874 | vrMLR model4 | 0.680* | 0.517 | 0.835 |
vrRF model5 | 0.895†| 0.741 | 0.919 | vrMLR model5 | 0.801* | 0.630 | 0.950 |
vrRF model6 | 0.918 | 0.821 | 0.944 | vrMLR model6 | 0.798* | 0.643 | 0.959 |
*Significantly lower than that in the corresponding RF model: p<0.01.
†Significantly lower than that in the corresponding RF model: p<0.05.
AUC, area under the curve; MLR, Multiple Logistic Regression; RF, Random Forest; ROC, receiver operating characteristic; vrMLR, variable restricted multiple logistic regression (use only nine variables according to a previous study); vrRF, variable restricted random forest (only use single year for prediction).