Skip to main content

Advertisement

Log in

Gut Microbiome and Obesity: A Plausible Explanation for Obesity

  • Obesity Treatment (CM Apovian, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Obesity is a multifactorial disorder that results in excessive accumulation of adipose tissue. Although obesity is caused by alterations in the energy consumption/expenditure balance, the factors promoting this disequilibrium are incompletely understood. The rapid development of new technologies and analysis strategies to decode the gut microbiota composition and metabolic pathways has opened a door into the complexity of the guest–host interactions between the gut microbiota and its human host in health and in disease. Pivotal studies have demonstrated that manipulation of the gut microbiota and its metabolic pathways can affect host’s adiposity and metabolism. These observations have paved the way for further assessment of the mechanisms underlying these changes. In this review, we summarize the current evidence for possible mechanisms underlying gut-microbiota-induced obesity. The review addresses some well-known effects of the gut microbiota on energy harvesting and changes in metabolic machinery, on metabolic and immune interactions, and on possible changes in brain function and behavior. Although there is limited understanding on the symbiotic relationship between us and our gut microbiome, and how disturbances of this relationship affects our health, there is compelling evidence for an important role of the gut microbiota in the development and perpetuation of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Obesity and overweight. In: Fact sheet no. 311. March 2011. Accessed 22 Nov 2014.

  2. Collaborators USBoD. The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591–608. doi:10.1001/jama.2013.13805.

    Google Scholar 

  3. Sepulveda J, Murray C. The state of global health in 2014. Science. 2014;345(6202):1275–8. doi:10.1126/science.1257099.

    CAS  PubMed  Google Scholar 

  4. Okeke F, Roland BC, Mullin GE. The role of the gut microbiome in the pathogenesis and treatment of obesity. Glob Adv Health Med Improv Healthc Outcomes Worldw. 2014;3(3):44–57. doi:10.7453/gahmj.2014.018.

    Google Scholar 

  5. Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature. 2007;449(7164):811–8. doi:10.1038/nature06245.

    CAS  PubMed  Google Scholar 

  6. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi:10.1038/nature08821.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Yang X, Xie L, Li Y, Wei C. More than 9,000,000 unique genes in human gut bacterial community: estimating gene numbers inside a human body. PLoS ONE. 2009;4(6):e6074. doi:10.1371/journal.pone.0006074.

    PubMed Central  PubMed  Google Scholar 

  8. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60. doi:10.1038/nature11450. This study used a wide gut metagenome analysis to assess for changes in type-2 diabetes patients; showing that some subsets of bacterial genes are highly specific and may serve as biological markers for type-2 diabetes.

    CAS  PubMed  Google Scholar 

  9. Lederberg J. Infectious history. Science. 2000;288(5464):287–93.

    CAS  PubMed  Google Scholar 

  10. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–48. doi:10.1016/j.cell.2006.02.017.

    CAS  PubMed  Google Scholar 

  11. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31. doi:10.1038/nature05414.

    PubMed  Google Scholar 

  12. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3. doi:10.1038/4441022a.

    CAS  PubMed  Google Scholar 

  13. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–5. doi:10.1073/pnas.0504978102.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4. doi:10.1038/nature07540.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6ra14. doi:10.1126/scitranslmed.3000322.

    PubMed Central  PubMed  Google Scholar 

  16. Murphy EF, Cotter PD, Healy S, Marques TM, O’Sullivan O, Fouhy F, et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut. 2010;59(12):1635–42. doi:10.1136/gut.2010.215665.

    CAS  PubMed  Google Scholar 

  17. Woting A, Pfeiffer N, Loh G, Klaus S, Blaut M. Clostridium ramosum promotes high-fat diet-induced obesity in gnotobiotic mouse models. mBio. 2014;5(5):e01530-14. doi:10.1128/mBio.01530-14.

    PubMed Central  PubMed  Google Scholar 

  18. Million M, Angelakis E, Maraninchi M, Henry M, Giorgi R, Valero R, et al. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, smithii and Escherichia coli. Int J Obes. 2013;37(11):1460–6. doi:10.1038/ijo.2013.20.

    CAS  Google Scholar 

  19. Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104(3):979–84. doi:10.1073/pnas.0605374104.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Samuel BS, Gordon JI. A humanized gnotobiotic mouse model of host–archaeal–bacterial mutualism. Proc Natl Acad Sci U S A. 2006;103(26):10011–6. doi:10.1073/pnas.0602187103.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913-6 e7. doi:10.1053/j.gastro.2012.06.031.

    PubMed  Google Scholar 

  22. Blustein J, Attina T, Liu M, Ryan AM, Cox LM, Blaser MJ, et al. Association of caesarean delivery with child adiposity from age 6 weeks to 15 years. Int J Obes. 2013;37(7):900–6. doi:10.1038/ijo.2013.49.

    CAS  Google Scholar 

  23. Bergstrom A, Skov TH, Bahl MI, Roager HM, Christensen LB, Ejlerskov KT, et al. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol. 2014;80(9):2889–900. doi:10.1128/AEM. 00342-14.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Graff M, Ngwa JS, Workalemahu T, Homuth G, Schipf S, Teumer A, et al. Genome-wide analysis of BMI in adolescents and young adults reveals additional insight into the effects of genetic loci over the life course. Hum Mol Genet. 2013;22(17):3597–607. doi:10.1093/hmg/ddt205.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214. doi:10.1126/science.1241214. Elegant experiment controlling for diet and genetic factors to measure the effect of microbiome transplant on phenotype and metabolism. Also shows that phenotype/metabolomic profile can be partially transferred by fecal transplant and points to tight interaction between diet and gut microbiome.

    PubMed  Google Scholar 

  26. Gaskins HR, Collier CT, Anderson DB. Antibiotics as growth promotants: mode of action. Anim Biotechnol. 2002;13(1):29–42. doi:10.1081/ABIO-120005768.

    CAS  PubMed  Google Scholar 

  27. Petschow B, Dore J, Hibberd P, Dinan T, Reid G, Blaser M, et al. Probiotics, prebiotics, and the host microbiome: the science of translation. Ann N Y Acad Sci. 2013;1306:1–17. doi:10.1111/nyas.12303.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ. Infant antibiotic exposures and early-life body mass. Int J Obes. 2013;37(1):16–23. doi:10.1038/ijo.2012.132.

    CAS  Google Scholar 

  29. Ajslev TA, Andersen CS, Gamborg M, Sorensen TI, Jess T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int J Obes. 2011;35(4):522–9. doi:10.1038/ijo.2011.27.

    CAS  Google Scholar 

  30. Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488(7413):621–6. doi:10.1038/nature11400.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81(3):1031–64.

    CAS  PubMed  Google Scholar 

  32. Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40(3):235–43.

    CAS  PubMed  Google Scholar 

  33. Macfarlane GT, Gibson GR, Cummings JH. Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol. 1992;72(1):57–64.

    CAS  PubMed  Google Scholar 

  34. Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18(1):190–5. doi:10.1038/oby.2009.167.

    PubMed  Google Scholar 

  35. Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TM, Comelli EM. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes. 2014;4:e121. doi:10.1038/nutd.2014.23.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R, et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci U S A. 2007;104(25):10643–8. doi:10.1073/pnas.0704189104.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Thauer RK, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977;41(1):100–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509–17. doi:10.2337/db08-1637.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Arora T, Sharma R, Frost G. Propionate. Anti-obesity and satiety enhancing factor? Appetite. 2011;56(2):511–5. doi:10.1016/j.appet.2011.01.016.

    PubMed  Google Scholar 

  40. Arora T, Loo RL, Anastasovska J, Gibson GR, Tuohy KM, Sharma RK, et al. Differential effects of two fermentable carbohydrates on central appetite regulation and body composition. PLoS ONE. 2012;7(8):e43263. doi:10.1371/journal.pone.0043263.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Vidrine K, Ye J, Martin RJ, McCutcheon KL, Raggio AM, Pelkman C, et al. Resistant starch from high amylose maize (HAM-RS2) and dietary butyrate reduce abdominal fat by a different apparent mechanism. Obesity. 2014;22(2):344–8. doi:10.1002/oby.20501.

    CAS  PubMed  Google Scholar 

  42. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106(10):3698–703. doi:10.1073/pnas.0812874106.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Zheng X, Xie G, Zhao A, Zhao L, Yao C, Chiu NH, et al. The footprints of gut microbial–mammalian co-metabolism. J Proteome Res. 2011;10(12):5512–22. doi:10.1021/pr2007945.

    CAS  PubMed  Google Scholar 

  44. Nicholson JK. Use of metabolomics to study gut microorganisms. Annu Rev Nutr. 2008. doi:10.1146/annurev-nutr-080508-141243.

    Google Scholar 

  45. Lindon JC, Nicholson JK. Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. Annu Rev Anal Chem. 2008;1:45–69. doi:10.1146/annurev.anchem.1.031207.113026.

    CAS  Google Scholar 

  46. Xie B, Waters MJ, Schirra HJ. Investigating potential mechanisms of obesity by metabolomics. J Biomed Biotechnol. 2012;2012:805683. doi:10.1155/2012/805683.

    PubMed Central  PubMed  Google Scholar 

  47. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23. doi:10.1073/pnas.0407076101.

    PubMed Central  PubMed  Google Scholar 

  48. Vance DE. Role of phosphatidylcholine biosynthesis in the regulation of lipoprotein homeostasis. Curr Opin Lipidol. 2008;19(3):229–34. doi:10.1097/MOL.0b013e3282fee935.

    CAS  PubMed  Google Scholar 

  49. Aw W, Fukuda S. Toward the comprehensive understanding of the gut ecosystem via metabolomics-based integrated omics approach. Semin Immunopathol. 2014. doi:10.1007/s00281-014-0456-2.

    PubMed  Google Scholar 

  50. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482(7384):179–85. doi:10.1038/nature10809. Interesting study on interaction between inflammatory response and gut microbiome composition and its role in progression of fatty liver disease and obesity, of note similar findings were seen when altered microbiome was transmitted via cohabitation.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology. 2011;140(3):976–86. doi:10.1053/j.gastro.2010.11.049.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63. doi:10.1038/nature09922.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A. 2006;103(33):12511–6. doi:10.1073/pnas.0601056103.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85. doi:10.1038/nm.3145.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4523–30. doi:10.1073/pnas.1006734107.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47(2):241–59. doi:10.1194/jlr. R500013-JLR200.

    CAS  PubMed  Google Scholar 

  57. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484–9. doi:10.1038/nature04330.

    CAS  PubMed  Google Scholar 

  58. Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10(3):167–77. doi:10.1016/j.cmet.2009.08.001.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Prawitt J, Abdelkarim M, Stroeve JH, Popescu I, Duez H, Velagapudi VR, et al. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes. 2011;60(7):1861–71. doi:10.2337/db11-0030.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci U S A. 2008;105(36):13580–5. doi:10.1073/pnas.0804437105.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Zhang Y, Lee FY, Barrera G, Lee H, Vales C, Gonzalez FJ, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A. 2006;103(4):1006–11. doi:10.1073/pnas.0506982103.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156(1–2):84–96. doi:10.1016/j.cell.2013.12.016.

    PubMed  Google Scholar 

  63. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13(5):517–26. doi:10.1016/j.cmet.2011.02.018.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50. doi:10.1038/nature12721.

    CAS  PubMed  Google Scholar 

  65. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A. 2008;105(43):16767–72. doi:10.1073/pnas.0808567105.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7268):1282–6. doi:10.1038/nature08530.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829. doi:10.1038/ncomms2852.

    PubMed Central  PubMed  Google Scholar 

  68. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61(2):364–71. doi:10.2337/db11-1019.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Choi J, Joseph L, Pilote L. Obesity and C-reactive protein in various populations: a systematic review and meta-analysis. Obes Rev Off J Int Assoc Study Obes. 2013;14(3):232–44. doi:10.1111/obr.12003.

    CAS  Google Scholar 

  70. Marques-Vidal P, Bochud M, Bastardot F, Luscher T, Ferrero F, Gaspoz JM, et al. Association between inflammatory and obesity markers in a Swiss population-based sample (CoLaus Study). Obes Facts. 2012;5(5):734–44. doi:10.1159/000345045.

    CAS  PubMed  Google Scholar 

  71. Bahceci M, Gokalp D, Bahceci S, Tuzcu A, Atmaca S, Arikan S. The correlation between adiposity and adiponectin, tumor necrosis factor alpha, interleukin-6 and high sensitivity C-reactive protein levels. Is adipocyte size associated with inflammation in adults? J Endocrinol Investig. 2007;30(3):210–4.

    CAS  Google Scholar 

  72. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7. doi:10.1038/nature05485.

    CAS  PubMed  Google Scholar 

  73. Greenberg AS, Obin MS. Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr. 2006;83(2):461S–5S.

    CAS  PubMed  Google Scholar 

  74. Maury E, Brichard SM. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol. 2010;314(1):1–16. doi:10.1016/j.mce.2009.07.031.

    CAS  PubMed  Google Scholar 

  75. Sell H, Eckel J. Adipose tissue inflammation: novel insight into the role of macrophages and lymphocytes. Curr Opin Clin Nutr Metab Care. 2010;13(4):366–70. doi:10.1097/MCO.0b013e32833aab7f.

    PubMed  Google Scholar 

  76. Sanz Y, Moya-Perez A. Microbiota, inflammation and obesity. Adv Exp Med Biol. 2014;817:291–317. doi:10.1007/978-1-4939-0897-4_14.

    CAS  PubMed  Google Scholar 

  77. Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2014. doi:10.1016/S2213-8587(14)70134-2.

    PubMed  Google Scholar 

  78. Bleau C, Karelis AD, St-Pierre DH, Lamontagne L. Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low grade inflammation and the development of obesity and diabetes. Diabetes Metab Res Rev. 2014. doi:10.1002/dmrr.2617. Good review of interactions between gut microbiome, intestinal barrier and inflammation in obesity development.

    PubMed  Google Scholar 

  79. Peterson CT, Sharma V, Elmen L, Peterson SN. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin Exp Immunol. 2014. doi:10.1111/cei.12474.

    Google Scholar 

  80. Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NM, Magness S, et al. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS ONE. 2010;5(8):e12191. doi:10.1371/journal.pone.0012191.

    PubMed Central  PubMed  Google Scholar 

  81. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–81. doi:10.2337/db07-1403.

    CAS  PubMed  Google Scholar 

  82. de La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol. 2010;299(2):G440–8. doi:10.1152/ajpgi.00098.2010.

    Google Scholar 

  83. Mehta NN, McGillicuddy FC, Anderson PD, Hinkle CC, Shah R, Pruscino L, et al. Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes. 2010;59(1):172–81. doi:10.2337/db09-0367.

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Gangarapu V, Yildiz K, Ince AT, Baysal B. Role of gut microbiota: obesity and NAFLD. Turk J Gastroenterol. 2014;25(2):133–40. doi:10.5152/tjg.2014.7886.

    PubMed  Google Scholar 

  85. Moran CP, Shanahan F. Gut microbiota and obesity: role in aetiology and potential therapeutic target. Best Pract Res Clin Gastroenterol. 2014;28(4):585–97. doi:10.1016/j.bpg.2014.07.005.

    CAS  PubMed  Google Scholar 

  86. Remely M, Aumueller E, Jahn D, Hippe B, Brath H, Haslberger AG. Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity. Benefic Microbes. 2014;5(1):33–43. doi:10.3920/BM2013.006.

    CAS  Google Scholar 

  87. Raybould HE. Gut microbiota, epithelial function and derangements in obesity. J Physiol. 2012;590(Pt 3):441–6. doi:10.1113/jphysiol.2011.222133.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance. Mol Asp Med. 2013;34(1):39–58. doi:10.1016/j.mam.2012.11.001.

    CAS  Google Scholar 

  89. Little TJ, Feinle-Bisset C. Effects of dietary fat on appetite and energy intake in health and obesity—oral and gastrointestinal sensory contributions. Physiol Behav. 2011;104(4):613–20. doi:10.1016/j.physbeh.2011.04.038.

    CAS  PubMed  Google Scholar 

  90. Kim KA, Gu W, Lee IA, Joh EH, Kim DH. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS ONE. 2012;7(10):e47713. doi:10.1371/journal.pone.0047713.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM, Schenka AA, et al. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes. 2007;56(8):1986–98. doi:10.2337/db06-1595.

    CAS  PubMed  Google Scholar 

  92. Song MJ, Kim KH, Yoon JM, Kim JB. Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem Biophys Res Commun. 2006;346(3):739–45. doi:10.1016/j.bbrc.2006.05.170.

    CAS  PubMed  Google Scholar 

  93. Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A. 2004;101(29):10679–84. doi:10.1073/pnas.0403249101.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228–31. doi:10.1126/science.1179721.

    CAS  PubMed  Google Scholar 

  95. Vijay-Kumar M, Sanders CJ, Taylor RT, Kumar A, Aitken JD, Sitaraman SV, et al. Deletion of TLR5 results in spontaneous colitis in mice. J Clin Invest. 2007;117(12):3909–21. doi:10.1172/JCI33084.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Moreno-Navarrete JM, Sabater M, Ortega F, Ricart W, Fernandez-Real JM. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance. PLoS ONE. 2012;7(5):e37160. doi:10.1371/journal.pone.0037160.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Kurashima Y, Goto Y, Kiyono H. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation. Eur J Immunol. 2013;43(12):3108–15. doi:10.1002/eji.201343782.

    CAS  PubMed  Google Scholar 

  98. Yu YB, Li YQ. Enteric glial cells and their role in the intestinal epithelial barrier. World J Gastroenterol. 2014;20(32):11273–80. doi:10.3748/wjg.v20.i32.11273.

    PubMed Central  PubMed  Google Scholar 

  99. Ewaschuk JB, Diaz H, Meddings L, Diederichs B, Dmytrash A, Backer J, et al. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol. 2008;295(5):G1025–34. doi:10.1152/ajpgi.90227.2008.

    CAS  PubMed  Google Scholar 

  100. Anderson RC, Cookson AL, McNabb WC, Kelly WJ, Roy NC. Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiol Lett. 2010;309(2):184–92. doi:10.1111/j.1574-6968.2010.02038.x.

    CAS  PubMed  Google Scholar 

  101. Shen TY, Qin HL, Gao ZG, Fan XB, Hang XM, Jiang YQ. Influences of enteral nutrition combined with probiotics on gut microflora and barrier function of rats with abdominal infection. World J Gastroenterol. 2006;12(27):4352–8.

    PubMed Central  PubMed  Google Scholar 

  102. Ukena SN, Singh A, Dringenberg U, Engelhardt R, Seidler U, Hansen W, et al. Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS ONE. 2007;2(12):e1308. doi:10.1371/journal.pone.0001308.

    PubMed Central  PubMed  Google Scholar 

  103. Karczewski J, Troost FJ, Konings I, Dekker J, Kleerebezem M, Brummer RJ, et al. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am J Physiol Gastrointest Liver Physiol. 2010;298(6):G851–9. doi:10.1152/ajpgi.00327.2009.

    CAS  PubMed  Google Scholar 

  104. Lamprecht M, Bogner S, Schippinger G, Steinbauer K, Fankhauser F, Hallstroem S, et al. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial. J Int Soc Sports Nutr. 2012;9(1):45. doi:10.1186/1550-2783-9-45.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Li Q, Zhang Q, Wang C, Liu X, Li N, Li J. Disruption of tight junctions during polymicrobial sepsis in vivo. J Pathol. 2009;218(2):210–21. doi:10.1002/path.2525.

    CAS  PubMed  Google Scholar 

  106. Lai CW, Sun TL, Lo W, Tang ZH, Wu S, Chang YJ, et al. Shedding-induced gap formation contributes to gut barrier dysfunction in endotoxemia. J Trauma Acute Care Surg. 2013;74(1):203–13. doi:10.1097/TA.0b013e3182788083.

    PubMed  Google Scholar 

  107. Jorgensen VL, Nielsen SL, Espersen K, Perner A. Increased colorectal permeability in patients with severe sepsis and septic shock. Intensive Care Med. 2006;32(11):1790–6. doi:10.1007/s00134-006-0356-6.

    PubMed  Google Scholar 

  108. Covington DK, Briscoe CA, Brown AJ, Jayawickreme CK. The G-protein-coupled receptor 40 family (GPR40-GPR43) and its role in nutrient sensing. Biochem Soc Trans. 2006;34(Pt 5):770–3. doi:10.1042/BST0340770.

    CAS  PubMed  Google Scholar 

  109. Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem. 2003;278(28):25481–9. doi:10.1074/jbc.M301403200.

    PubMed  Google Scholar 

  110. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72. doi:10.2337/db06-1491.

    CAS  PubMed  Google Scholar 

  111. Kallio KA, Hatonen KA, Lehto M, Salomaa V, Mannisto S, Pussinen PJ. Endotoxemia, nutrition, and cardiometabolic disorders. Acta Diabetol. 2014. doi:10.1007/s00592-014-0662-3.

    PubMed  Google Scholar 

  112. Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K. Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci Off J Soc Neurosci. 2014;34(46):15490–6. doi:10.1523/JNEUROSCI. 3299-14.2014. Comprehensive review on current evidence on interaction between gut microbiome and brain function.

    Google Scholar 

  113. Stilling RM, Dinan TG, Cryan JF. Microbial genes, brain & behaviour—epigenetic regulation of the gut-brain axis. Genes Brain Behav. 2014;13(1):69–86. doi:10.1111/gbb.12109.

    CAS  PubMed  Google Scholar 

  114. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12. doi:10.1038/nrn3346.

    CAS  PubMed  Google Scholar 

  115. Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013;144(7):1394–401. doi:10.1053/j.gastro.2013.02.043. 401 e1-4.

    CAS  PubMed  Google Scholar 

  116. Swartz TD, Duca FA, de Wouters T, Sakar Y, Covasa M. Up-regulation of intestinal type 1 taste receptor 3 and sodium glucose luminal transporter-1 expression and increased sucrose intake in mice lacking gut microbiota. Br J Nutr. 2012;107(5):621–30. doi:10.1017/S0007114511003412.

    CAS  PubMed  Google Scholar 

  117. Covasa M. Deficits in gastrointestinal responses controlling food intake and body weight. Am J Physiol Regul Integr Comp Physiol. 2010;299(6):R1423–39. doi:10.1152/ajpregu.00126.2010.

    CAS  PubMed  Google Scholar 

  118. de Lartigue G, Barbier de la Serre C, Espero E, Lee J, Raybould HE. Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons. Am J Physiol Endocrinol Metab. 2011;301(1):E187–95. doi:10.1152/ajpendo.00056.2011.

    PubMed Central  PubMed  Google Scholar 

  119. Alcock J, Maley CC, Aktipis CA. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays. 2014;36(10):940–9. doi:10.1002/bies.201400071.

    PubMed Central  PubMed  Google Scholar 

  120. Gillum MP, Zhang D, Zhang XM, Erion DM, Jamison RA, Choi C, et al. N-acylphosphatidylethanolamine, a gut- derived circulating factor induced by fat ingestion, inhibits food intake. Cell. 2008;135(5):813–24. doi:10.1016/j.cell.2008.10.043.

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Chen Z, Guo L, Zhang Y, Walzem RL, Pendergast JS, Printz RL, et al. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest. 2014;124(8):3391–406. doi:10.1172/JCI72517.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. So PW, Yu WS, Kuo YT, Wasserfall C, Goldstone AP, Bell JD, et al. Impact of resistant starch on body fat patterning and central appetite regulation. PLoS ONE. 2007;2(12):e1309. doi:10.1371/journal.pone.0001309.

    PubMed Central  PubMed  Google Scholar 

  123. Lin HV, Frassetto A, Kowalik Jr EJ, Nawrocki AR, Lu MM, Kosinski JR, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE. 2012;7(4):e35240. doi:10.1371/journal.pone.0035240.

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Neyrinck AM, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60(11):2775–86. doi:10.2337/db11-0227.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Scholtz S, Miras AD, Chhina N, Prechtl CG, Sleeth ML, Daud NM, et al. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut. 2014;63(6):891–902. doi:10.1136/gutjnl-2013-305008.

    PubMed Central  PubMed  Google Scholar 

  126. Peterli R, Steinert RE, Woelnerhanssen B, Peters T, Christoffel-Courtin C, Gass M, et al. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes Surg. 2012;22(5):740–8. doi:10.1007/s11695-012-0622-3.

    PubMed Central  PubMed  Google Scholar 

  127. Basso N, Capoccia D, Rizzello M, Abbatini F, Mariani P, Maglio C, et al. First-phase insulin secretion, insulin sensitivity, ghrelin, GLP-1, and PYY changes 72 h after sleeve gastrectomy in obese diabetic patients: the gastric hypothesis. Surg Endosc. 2011;25(11):3540–50. doi:10.1007/s00464-011-1755-5.

    CAS  PubMed  Google Scholar 

  128. le Roux CW, Welbourn R, Werling M, Osborne A, Kokkinos A, Laurenius A, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg. 2007;246(5):780–5. doi:10.1097/SLA.0b013e3180caa3e3.

    PubMed  Google Scholar 

  129. Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A. 2009;106(7):2365–70. doi:10.1073/pnas.0812600106.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Li JV, Ashrafian H, Bueter M, Kinross J, Sands C, le Roux CW, et al. Metabolic surgery profoundly influences gut microbial–host metabolic cross-talk. Gut. 2011;60(9):1214–23. doi:10.1136/gut.2010.234708. This study provides a comprehensive description of changes in gut anatomy, microbiota profile and metabolism after gastric bypass and possible explanations of their influence in weight loss after gastric bypass.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the National Institutes of Health grants R01 DK048351 (EAM), P50 DK064539 (EAM), and P30 DK041301. The authors thank Ms. Cathy Liu for invaluable editorial and graphic design assistance.

Compliance with Ethics Guidelines

Conflict of Interest

Claudia Sanmiguel, Arpana Gupta, and Emeran A. Mayer declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

The human studies contained in this article that were perfomed by any of the authors were IRB approved and subjects were consented before their participation in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Sanmiguel.

Additional information

This article is part of the Topical Collection on Obesity Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanmiguel, C., Gupta, A. & Mayer, E.A. Gut Microbiome and Obesity: A Plausible Explanation for Obesity. Curr Obes Rep 4, 250–261 (2015). https://doi.org/10.1007/s13679-015-0152-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-015-0152-0

Keywords

Navigation