Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: the role of GRK4 in the etiology of essential hypertension and salt sensitivity

Abstract

Hypertension and salt sensitivity of blood pressure are two conditions the etiologies of which are still elusive because of the complex influences of genes, environment, and behavior. Recent understanding of the molecular mechanisms that govern sodium homeostasis is shedding new light on how genes, their protein products, and interacting metabolic pathways contribute to disease. Sodium transport is increased in the proximal tubule and thick ascending limb of Henle of the kidney in human essential hypertension. This Review focuses on the counter-regulation between the dopaminergic and renin–angiotensin systems in the renal proximal tubule, which is the site of about 70% of total renal sodium reabsorption. The inhibitory effect of dopamine is most evident under conditions of moderate sodium excess, whereas the stimulatory effect of angiotensin II is most evident under conditions of sodium deficit. Dopamine and angiotensin II exert their actions via G protein-coupled receptors, which are in turn regulated by G protein-coupled receptor kinases (GRKs). Polymorphisms that lead to aberrant action of GRKs cause a number of conditions, including hypertension and salt sensitivity. Polymorphisms in one particular member of this family—GRK4—have been shown to cause hyperphosphorylation, desensitization and internalization of a member of the dopamine receptor family, the dopamine 1 receptor, while increasing the expression of a key receptor of the renin–angiotensin system, the angiotensin II type 1 receptor. Novel diagnostic and therapeutic approaches for identifying at-risk subjects, followed by selective treatment of hypertension and salt sensitivity, might center on restoring normal receptor function through blocking the effects of GRK4 polymorphisms.

Key Points

  • Dopamine (inhibitory) and angiotensin (stimulatory) counter-regulate sodium reabsorption in the proximal tubule

  • Dopamine and angiotensin exert their effects through G protein-coupled receptors, which are regulated by G protein-coupled receptor kinases (GRKs)

  • Uncoupling of the dopamine 1 receptor from its effector proteins (e.g. adenylyl cyclase) contributes to essential hypertension

  • Increased activity of GRK4 is correlated with high blood pressure

  • GRK4 gene variants have been detected in hypertensive and salt-sensitive humans

  • Antagonists of GRK4, which should restore coupling of the dopamine 1 receptor to its effector proteins, might prove to be useful antihypertensives

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The principal source of renal dopamine is circulating L-DOPA, which is freely filtered by the glomerulus.
Figure 2: Distribution of dopamine and angiotensin receptors in the nephron.
Figure 3: Schematic representation of G protein-coupled receptor kinase 4 with its three principal domains: the GPCR binding domain; the catalytic domain; and the membrane targeting domain.
Figure 4: Schematic diagrams of G protein-coupled receptor kinase 4 transgenes, with the receptor binding, catalytic and membrane targeting domains.

Similar content being viewed by others

References

  1. Chobanian AV et al. (2003) The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 289: 2560–2572

    Article  CAS  PubMed  Google Scholar 

  2. Sullivan JM (1991) Salt sensitivity: Definition, conception, methodology, and long-term issues. Hypertension 17 (Suppl): SI61–SI68

    Article  Google Scholar 

  3. Weinberger MH et al. (2001) Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension 37: 429–432

    Article  CAS  PubMed  Google Scholar 

  4. Luft FC (2004) Geneticism of essential hypertension. Hypertension 43: 1155–1159

    Article  CAS  PubMed  Google Scholar 

  5. Lifton RP et al. (2002) Salt and blood pressure: new insight from human genetic studies. Cold Spring Harb Symp Quant Biol 67: 445–450

    Article  CAS  PubMed  Google Scholar 

  6. Meneton P et al. (2005) Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol Rev 85: 679–715

    Article  CAS  PubMed  Google Scholar 

  7. Frey BA et al. (2000) Sodium homeostasis in transplanted rats with a spontaneously hypertensive rat kidney. Am J Physiol Regul Integr Comp Physiol 279: R1099–R1104

    Article  CAS  PubMed  Google Scholar 

  8. Curtis JJ et al. (1983) Remission of essential hypertension after renal transplantation. N Engl J Med 309: 1009–1015

    Article  CAS  PubMed  Google Scholar 

  9. Guidi E et al. (1996) Hypertension may be transplanted with the kidney in humans: a long-term historical prospective follow-up of recipients grafted with kidneys coming from donors with or without hypertension in their families. J Am Soc Nephrol 7: 1131–1138

    CAS  PubMed  Google Scholar 

  10. Morgan DA et al. (1990) Effects of interstrain renal transplantation on NaCl-induced hypertension in Dahl rats. Hypertension 15: 436–442

    Article  CAS  PubMed  Google Scholar 

  11. Grisk O et al. (2002) Sympathetic-renal interaction in chronic arterial pressure control. Am J Physiol Regul Integr Comp Physiol 283: R441–R450

    Article  CAS  PubMed  Google Scholar 

  12. Ursino M and Magosso E (2003) Short-term autonomic control of cardiovascular function: a mini-review with the help of mathematical models. J Integr Neurosci 2: 219–247

    Article  PubMed  Google Scholar 

  13. Iwamoto T et al. (2004) Salt-sensitive hypertension is triggered by Ca2+ entry via Na+/Ca2+ exchanger type-1 in vascular smooth muscle. Nat Med 10: 1193–1199

    Article  CAS  PubMed  Google Scholar 

  14. Aviv A et al. (2005) Urinary potassium excretion and sodium sensitivity in blacks (response: reinterpreting sodium-potassium data in salt sensitivity hypertension: a prospective debate). Hypertension 43: 707–713

    Article  CAS  Google Scholar 

  15. Doris PA (2000) Renal proximal tubule sodium transport and genetic mechanisms of essential hypertension. J Hypertens 18: 509–519

    Article  CAS  PubMed  Google Scholar 

  16. Ortiz PA and Garvin JL (2001) Intrarenal transport and vasoactive substances in hypertension. Hypertension 38: 621–624

    Article  CAS  PubMed  Google Scholar 

  17. Lavoie JL and Sigmund CD (2003) Overview of the renin-angiotensin system—an endocrine and paracrine system. Endocrinology 144: 2179–2183

    Article  CAS  PubMed  Google Scholar 

  18. Navar LG et al. (2002) Regulation of intrarenal angiotensin II in hypertension. Hypertension 39: 316–322

    Article  CAS  PubMed  Google Scholar 

  19. Cervenka L et al. (1999) Proximal tubular angiotensin II levels and renal functional responses to AT1 receptor blockade in nonclipped kidneys of Goldblatt hypertensive rats. Hypertension 33: 102–107

    Article  CAS  PubMed  Google Scholar 

  20. Grisk O et al. (2004) Analysis of arterial pressure regulating systems in renal post-transplantation hypertension. J Hypertens 22: 199–207

    Article  CAS  PubMed  Google Scholar 

  21. Ladines CA et al. (2001) Impaired renal D(1)-like and D(2)-like dopamine receptor interaction in the spontaneously hypertensive rat. Am J Physiol Regul Integr Comp Physiol 281: R1071–R1078

    Article  CAS  PubMed  Google Scholar 

  22. Siragy HM et al. (1989) Evidence that intrarenal dopamine acts as a paracrine substance at the renal tubule. Am J Physiol 257: F469–F477

    CAS  PubMed  Google Scholar 

  23. Liu LX et al. (1999) D2S, D2L, D3, and D4 dopamine receptors couple to a voltage-dependent potassium current in N18TG2 × mesencephalon hybrid cell (MES-23.5) via distinct G proteins. Synapse 31: 108–118

    Article  CAS  PubMed  Google Scholar 

  24. Lavine N et al. (2002) G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. J Biol Chem 277: 46010–46019

    Article  CAS  PubMed  Google Scholar 

  25. Gomes P and Soares-Da-Silva P (2002) D2-like receptor-mediated inhibition of Na+-K+-ATPase activity is dependent on the opening of K+ channels. Am J Physiol Renal Physiol 23: F114–F123

    Article  Google Scholar 

  26. Allayee H et al. (2001) Genome scan for blood pressure in Dutch dyslipidemic families reveals linkage to a locus on chromosome 4p. Hypertension 38: 773–778

    Article  CAS  PubMed  Google Scholar 

  27. Jose PA et al. (2003) Dopamine and the kidney: a role in hypertension? Curr Opin Nephrol Hypertens 12: 189–194

    Article  CAS  PubMed  Google Scholar 

  28. Zimlichman R et al. (1988) Derivation of urinary dopamine from plasma dopa. Clin Sci (Lond) 75: 515–520

    Article  CAS  Google Scholar 

  29. Gomes P and Soares-da-Silva P (2002) Na+-independent transporters, LAT-2 and b0,+, exchange L-DOPA with neutral and basic amino acids in two clonal renal cell lines. J Membr Biol 186: 63–80

    Article  CAS  PubMed  Google Scholar 

  30. Quinones H et al. (2004) The dopamine precursor L-dihydroxyphenylalanine is transported by the amino acid transporters rBAT and LAT2 in renal cortex. Am J Physiol Renal Physiol 287: F74–F80

    Article  CAS  PubMed  Google Scholar 

  31. Xu J et al. (2005) Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J Clin Invest 115: 1275–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y et al. (2001) Effect of inhibition of MAO and COMT on intrarenal dopamine and serotonin and on renal function. Am J Physiol Regul Integr Comp Physiol 280: R248–R254

    Article  CAS  PubMed  Google Scholar 

  33. Odlind C et al. (2002) Reduced natriuretic response to acute sodium loading in COMT gene deleted mice. BMC Physiol 2: 14

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hayashi M et al. (1991) Effects of high salt intake on dopamine production in rat kidney. Am J Physiol 260: E675–E679

    CAS  PubMed  Google Scholar 

  35. Wang ZQ et al. (1997) Intrarenal dopamine production and distribution in the rat: physiological control of sodium excretion. Hypertension 29: 228–234

    Article  CAS  PubMed  Google Scholar 

  36. Damasceno A et al. (1999) Deficiency of renal dopaminergic-dependent natriuretic response to acute sodium load in black salt-sensitive subjects in contrast to salt-resistant subjects. J Hypertens 17: 1995–2001

    Article  CAS  PubMed  Google Scholar 

  37. Gill JR Jr et al. (1991) High urinary dopa and low urinary dopamine-to-dopa ratio in salt-sensitive hypertension. Hypertension 18: 614–621

    Article  PubMed  Google Scholar 

  38. Racz K et al. (1985) Peripheral dopamine synthesis and metabolism in spontaneously hypertensive rats. Circ Res 57: 889–897

    Article  CAS  PubMed  Google Scholar 

  39. Saito I et al. (1994) Increased urinary dopamine excretion in young patients with essential hypertension. Clin Exp Hypertens 16: 29–39

    Article  CAS  PubMed  Google Scholar 

  40. Pinho MJ et al. (2004) Over-expression of renal LAT1 and LAT2 and enhanced L-DOPA uptake in SHR immortalized renal proximal tubular cells. Kidney Int 66: 216–226

    Article  CAS  PubMed  Google Scholar 

  41. Gurley SB et al. (2002) Gene-targeting studies of the renin-angiotensin system: mechanisms of hypertension and cardiovascular disease. Cold Spring Harb Symp Quant Biol 67: 451–457

    Article  CAS  PubMed  Google Scholar 

  42. Sechi LA et al. (1996) Tissue-specific regulation of type 1 angiotensin II receptor mRNA levels in the rat. Hypertension 28: 403–408

    Article  CAS  PubMed  Google Scholar 

  43. Hansell P and Fasching A (1991) The effect of dopamine receptor blockade on natriuresis is dependent on the degree of hypervolemia. Kidney Int 39: 253–258

    Article  CAS  PubMed  Google Scholar 

  44. Luippold G et al. (2005) Effect of dopamine D3 receptor blockade on renal function and glomerular size in diabetic rats. Naunyn Schmiedebergs Arch Pharmacol 371: 420–427

    Article  CAS  PubMed  Google Scholar 

  45. Albrecht FE et al. (1996) Role of the D1A dopamine receptor in the pathogenesis of genetic hypertension. J Clin Invest 97: 2283–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Asico LD et al. (1998) Disruption of the dopamine D3 receptor gene produces renin-dependent hypertension. J Clin Invest 102: 493–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jose PA et al. (1998) Renal dopamine receptors in health and hypertension. Pharmacol Ther 80: 149–182

    Article  CAS  PubMed  Google Scholar 

  48. Nishi A et al. (1993) Dopamine regulation of renal Na+,K+-ATPase activity is lacking in Dahl salt-sensitive rats. Hypertension 21: 767–771

    Article  CAS  PubMed  Google Scholar 

  49. Chen CJ and Lokhandwala MF (1992) An impairment of renal tubular DA-1 receptor function as the causative factor for diminished natriuresis to volume expansion in spontaneously hypertensive rats. Clin Exp Hypertens A 14: 615–628

    CAS  PubMed  Google Scholar 

  50. O'Connell DP et al. (1997) Differential human renal tubular responses to dopamine type 1 receptor stimulation are determined by blood pressure status. Hypertension 29: 115–122

    Article  CAS  PubMed  Google Scholar 

  51. Sanada H et al. (1999) Dopamine-1 receptor coupling defect in renal proximal tubule cells in hypertension. Hypertension 33: 1036–1042

    Article  CAS  PubMed  Google Scholar 

  52. Michel MC et al. (1992) On the role of renal alpha-adrenergic receptors in spontaneously hypertensive rats. Hypertension 19: 365–370

    Article  CAS  PubMed  Google Scholar 

  53. Kinoshita S et al. (1989) Defective dopamine-1 receptor adenylate cyclase coupling in the proximal convoluted tubule from the spontaneously hypertensive rat. J Clin Invest 84: 1849–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pedrosa R et al. (2004) Defective D1-like receptor-mediated inhibition of the Cl/HCO3 exchanger in immortalized SHR proximal tubular epithelial cells. Am J Physiol Renal Physiol 286: F1120–F1126

    Article  CAS  PubMed  Google Scholar 

  55. Chen C et al. (1993) Dopamine fails to inhibit renal tubular sodium pump in hypertensive rats. Hypertension 21: 364–372

    Article  CAS  PubMed  Google Scholar 

  56. Zeng C et al. (2005) Interaction of angiotensin II type 1 and D5 dopamine receptors in renal proximal tubule cells. Hypertension 45: 804–810

    Article  CAS  PubMed  Google Scholar 

  57. Sanada H et al. (2000) Differential expression and regulation of dopamine-1 (D-1) and dopamine-5 (D-5) receptor function in human kidney [abstract #156]. Am J Hypertens 13

  58. Zeng C et al. (2003) Perturbation of D1 dopamine and AT1 receptor interaction in spontaneously hypertensive rats. Hypertension 42: 787–792

    Article  CAS  PubMed  Google Scholar 

  59. Yu P et al.: Increased serine-phosphorylation of the D1 receptor in renal proximal tubule cells in hypertension. Kidney Int, in press

  60. Gao L et al. (2003) Alpha 2-adrenoceptors potentiate angiotensin II- and vasopressin-induced renal vasoconstriction in spontaneously hypertensive rats. J Pharmacol Exp Ther 305: 581–586

    Article  CAS  PubMed  Google Scholar 

  61. Pedrosa R et al. (2004) Gialpha3 protein-coupled dopamine D3 receptor-mediated inhibition of renal NHE3 activity in SHR proximal tubular cells is a PLC-PKC-mediated event. Am J Physiol Renal Physiol 287: F1059–F1066

    Article  CAS  PubMed  Google Scholar 

  62. Jackson EK et al. (2005) Enhanced activation of RhoA by angiotensin II in SHR preglomerular microvascular smooth muscle cells. J Cardiovasc Pharmacol 45: 283–285

    Article  CAS  PubMed  Google Scholar 

  63. Touyz RM et al. (2003) Redox-dependent signalling by angiotensin II and vascular remodelling in hypertension. Clin Exp Pharmacol Physiol 30: 860–866

    Article  CAS  PubMed  Google Scholar 

  64. Hussain T and Lokhandwala MF (1997) Renal dopamine DA1 receptor coupling with GS and Gq/11 proteins in spontaneously hypertensive rats. Am J Physiol 272: F339–F346

    CAS  PubMed  Google Scholar 

  65. Keys JR et al. (2002) Gq-coupled receptor agonists mediate cardiac hypertrophy via the vasculature. Hypertension 40: 660–666

    Article  CAS  PubMed  Google Scholar 

  66. Siffert W (2005) G protein polymorphisms in hypertension, atherosclerosis, and diabetes. Annu Rev Med 56: 17–28

    Article  CAS  PubMed  Google Scholar 

  67. Li XX et al. (2001) D1 dopamine receptor regulation of NHE3 during development in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 280: R1650–R1656

    Article  CAS  PubMed  Google Scholar 

  68. Burgess LH et al. (1993) Further characterization of D1A and D1B dopamine receptors in rat kidney [abstract]. Soc Neurosci Abstr 19: 75

    Google Scholar 

  69. Jose PA et al. (2003) Regulation of blood pressure by dopamine receptors. Nephron Physiol 95: 19–27

    Article  CAS  Google Scholar 

  70. Felder RA et al. (1993) Organ specificity of the dopamine1 receptor/adenylyl cyclase coupling defect in spontaneously hypertensive rats. Am J Physiol 264: R726–R732

    CAS  PubMed  Google Scholar 

  71. Ohbu K et al. (1993) Renal dopamine-1 receptors in hypertensive inbred rat strains with and without hyperactivity. Hypertension 21: 485–490

    Article  CAS  PubMed  Google Scholar 

  72. Lucas-Teixeira VA et al. (2000) Salt intake and sensitivity of intestinal and renal Na+-K+ ATPase to inhibition by dopamine in spontaneous hypertensive and Wistar-Kyoto rats. Clin Exp Hypertens 22: 455–469

    Article  CAS  PubMed  Google Scholar 

  73. de Vries PA et al. (1999) Impaired renal vascular response to a D1-like receptor agonist but not to an ACE inhibitor in conscious spontaneously hypertensive rats. J Cardiovasc Pharmacol 34: 191–198

    Article  CAS  PubMed  Google Scholar 

  74. Chatziantoniou C et al. (1995) Defective G protein activation of the cAMP pathway in rat kidney during genetic hypertension. Proc Natl Acad Sci USA 92: 2924–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zeng C et al. (2004) Aberrant D1 and D3 dopamine receptor transregulation in hypertension. Hypertension 43: 654–660

    Article  CAS  PubMed  Google Scholar 

  76. Murphy MB et al. (2001) Fenoldopam: a selective peripheral dopamine-receptor agonist for the treatment of severe hypertension. N Engl J Med 345: 1548–1557

    Article  CAS  PubMed  Google Scholar 

  77. Lao YS et al. (2002) Elevated renal cortical calmodulin-dependent protein kinase activity and blood pressure. Clin Exp Hypertens 24: 289–300

    Article  CAS  PubMed  Google Scholar 

  78. Uh M et al. (1998) Alteration of association of agonist-activated renal D1A dopamine receptors with G proteins in proximal tubules of the spontaneously hypertensive rat. J Hypertens 16: 1307–1313

    Article  CAS  PubMed  Google Scholar 

  79. Ohbu K and Felder RA (1993) Nephron specificity of dopamine receptor-adenylyl cyclase defect in spontaneous hypertension. Am J Physiol 264: F274–F279

    CAS  PubMed  Google Scholar 

  80. Xu J et al. (2000) Dopamine1 receptor, Gsalpha, and Na+-H+ exchanger interactions in the kidney in hypertension. Hypertension 36: 395–399

    Article  CAS  PubMed  Google Scholar 

  81. Gesek FA and Schoolwerth AC (1991) Hormone responses of proximal Na+-H+ exchanger in spontaneously hypertensive rats. Am J Physiol 261: F526–F536

    CAS  PubMed  Google Scholar 

  82. Kunimi M et al. (2000) Dopamine inhibits renal Na+:HCO3 cotransporter in rabbits and normotensive rats but not in spontaneously hypertensive rats. Kidney Int 57: 534–543

    Article  CAS  PubMed  Google Scholar 

  83. Debska-Slizien A et al. (1994) Endogenous dopamine regulates phosphate reabsorption but not NaK-ATPase in spontaneously hypertensive rat kidneys. J Am Soc Nephrol 5: 1125–1132

    CAS  PubMed  Google Scholar 

  84. Gurich RW and Beach RE (1994) Abnormal regulation of renal proximal tubule Na+-K+-ATPase by G proteins in spontaneously hypertensive rats. Am J Physiol 267: F1069–F1075

    CAS  PubMed  Google Scholar 

  85. Efendiev R et al. (2005) The 14-3-3 protein translates the Na+,K+-ATPase α1-subunit phosphorylation signal into binding and activation of phosphoinositide 3-kinase during endocytosis. J Biol Chem 280: 16272–16277

    Article  CAS  PubMed  Google Scholar 

  86. Efendiev R et al. (2003) Intracellular Na+ regulates dopamine and angiotensin II receptors availability at the plasma membrane and their cellular responses in renal epithelia. J Biol Chem 278: 28719–28726

    Article  CAS  PubMed  Google Scholar 

  87. Horiuchi A et al. (1992) Renal dopamine receptors and pre- and post-cAMP-mediated Na+ transport defect in spontaneously hypertensive rats. Am J Physiol 263: F1105–F1111

    CAS  PubMed  Google Scholar 

  88. Hinojos CA and Doris PA (2004) Altered subcellular distribution of Na+,K+-ATPase in proximal tubules in young spontaneously hypertensive rats. Hypertension 44: 95–100

    Article  CAS  PubMed  Google Scholar 

  89. Efendiev R et al. (2004) Hypertension-linked mutation in the adducin alpha-subunit leads to higher AP2-mu2 phosphorylation and impaired Na+,K+-ATPase trafficking in response to GPCR signals and intracellular sodium. Circ Res 95: 1100–1108

    Article  CAS  PubMed  Google Scholar 

  90. Sciarrone MT et al. (2003) ACE and alpha-adducin polymorphism as markers of individual response to diuretic therapy. Hypertension 41: 398–403

    Article  CAS  PubMed  Google Scholar 

  91. Moore JH and Williams SM (2002) New strategies for identifying gene–gene interactions in hypertension. Ann Med 34: 88–95

    Article  CAS  PubMed  Google Scholar 

  92. Cheng SX et al. (1999) [Ca2+]i determines the effects of protein kinases A and C on activity of rat renal Na+,K+-ATPase. J Physiol 1: 37–46

    Article  Google Scholar 

  93. Jose PA et al. (1998) Effects of costimulation of dopamine D1- and D2-like receptors on renal function. Am J Physiol 275: R986–R994

    CAS  PubMed  Google Scholar 

  94. Bertorello A and Aperia A (1990) Inhibition of proximal tubule Na+-K+-ATPase activity requires simultaneous activation of DA1 and DA2 receptors. Am J Physiol 259: F924–F928

    CAS  PubMed  Google Scholar 

  95. Felder CC et al. (1989) The dopamine-1 agonist, SKF 82526, stimulates phospholipase-C activity independent of adenylate cyclase. J Pharmacol Exp Ther 248: 171–175

    CAS  PubMed  Google Scholar 

  96. Pollack A (2004) Coactivation of D1 and D2 dopamine receptors: in marriage, a case of his, hers, and theirs. Sci STKE 2004: pe50

    PubMed  Google Scholar 

  97. Lezcano N et al. (2000) Dual signaling regulated by calcyon, a D1 dopamine receptor interacting protein. Science 287: 1660–1664

    Article  CAS  PubMed  Google Scholar 

  98. Luippold G et al. (2001) Dopamine D3 receptors and salt-dependent hypertension. J Am Soc Nephrol 12: 2272–2279

    CAS  PubMed  Google Scholar 

  99. Pedrosa R et al. (2004) Dopamine D3 receptor-mediated inhibition of Na+/H+ exchanger activity in normotensive and spontaneously hypertensive rat proximal tubular epithelial cells. Br J Pharmacol 142: 1343–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zeng C et al. (2006) D3 dopamine receptor directly interacts with D1 dopamine receptor in immortalized renal proximal tubule cells. Hypertension 47: 573–579

    Article  CAS  PubMed  Google Scholar 

  101. Sato M et al. (2000) Dopamine D1 receptor gene polymorphism is associated with essential hypertension. Hypertension 36: 183–186

    Article  CAS  PubMed  Google Scholar 

  102. Thomas D et al. (1988) Age-related changes in angiotensin II-stimulated proximal tubule fluid reabsorption in the spontaneously hypertensive rat. J Hypertens 6 (Suppl): S449–S451

    Article  CAS  Google Scholar 

  103. Correa FM et al. (1995) Kidney angiotensin II receptors and converting enzyme in neonatal and adult Wistar-Kyoto and spontaneously hypertensive rats. Peptides 16: 19–24

    Article  CAS  PubMed  Google Scholar 

  104. Chen C and Lokhandwala MF (1995) Potentiation by enalaprilat of fenoldopam-evoked natriuresis is due to blockade of intrarenal production of angiotensin-II in rats. Naunyn Schmiedebergs Arch Pharmacol 352: 194–200

    Article  CAS  PubMed  Google Scholar 

  105. Clark KL et al. (1991) Effects of dopamine DA1-receptor blockade and angiotensin converting enzyme inhibition on the renal actions of fenoldopam in the anaesthetized dog. J Hypertens 9: 1143–1150

    CAS  PubMed  Google Scholar 

  106. Hussain T et al. (1998) Bromocriptine regulates angiotensin II response on sodium pump in proximal tubules. Hypertension 32: 1054–1059

    Article  CAS  PubMed  Google Scholar 

  107. Zeng C et al. (2005) Rat strain effects of AT1 receptor activation on D1 dopamine receptors in immortalized renal proximal tubule cells. Hypertension 46: 799–805

    Article  CAS  PubMed  Google Scholar 

  108. Chatziantoniou C et al. (1993) Interactions of cAMP-mediated vasodilators with angiotensin II in rat kidney during hypertension. Am J Physiol 265: F845–F852

    CAS  PubMed  Google Scholar 

  109. Cheng HF et al. (1996) Dopamine decreases expression of type-1 angiotensin II receptors in renal proximal tubule. J Clin Invest 97: 2745–2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gildea J et al. (2005) Up-regulation of the angiotensin type II receptor by the dopamine-1 receptor in normotensive but not hypertensive human renal proximal tubule cells blocks angiotensin II dependent down-regulation of caveolin. Hypertension 46: 820

    Google Scholar 

  111. Koivukoski L et al. (2004) Meta-analysis of genome-wide scans for hypertension and blood pressure in Caucasians shows evidence of susceptibility regions on chromosomes 2 and 3. Hum Mol Genet 13: 2325–2332

    Article  CAS  PubMed  Google Scholar 

  112. Soma M et al. (2002) Ser9Gly polymorphism in the dopamine D3 receptor gene is not associated with essential hypertension in the Japanese. Med Sci Monit 8: CR1–CR4

    CAS  PubMed  Google Scholar 

  113. Kim OJ et al. (2004) The role of phosphorylation in D1 dopamine receptor desensitization: evidence for a novel mechanism of arrestin association. J Biol Chem 279: 7999–8010

    Article  CAS  PubMed  Google Scholar 

  114. Rankin ML et al. (2006) The D1 dopamine receptor is constitutively phosphorylated by g protein-coupled receptor kinase 4. Mol Pharmacol 69: 759–769

    CAS  PubMed  Google Scholar 

  115. Tiberi M et al. (1996) Differential regulation of dopamine D1A receptor responsiveness by various G protein-coupled receptor kinases. J Biol Chem 271: 3771–3778

    Article  CAS  PubMed  Google Scholar 

  116. Felder RA et al. (2002) G protein-coupled receptor kinase 4 gene variants in human essential hypertension. Proc Natl Acad Sci USA 99: 3872–3877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kohout TA and Lefkowitz RJ (2003) Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol Pharmacol 63: 9–18

    Article  CAS  PubMed  Google Scholar 

  118. Metaye T et al. (2005) Pathophysiological roles of G-protein-coupled receptor kinases. Cell Signal 17: 917–928

    Article  CAS  PubMed  Google Scholar 

  119. Willets JM et al. (2003) Non-visual GRKs: are we seeing the whole picture? Trends Pharmacol Sci 24: 626–633

    Article  CAS  PubMed  Google Scholar 

  120. Virlon B et al. (1998) Rat G protein-coupled receptor kinase GRK4: identification, functional expression, and differential tissue distribution of two splice variants. Endocrinology 139: 2784–2795

    Article  CAS  PubMed  Google Scholar 

  121. Gros R et al. (2000) G-protein-coupled receptor kinase activity in hypertension: increased vascular and lymphocyte G-protein receptor kinase-2 protein expression. Hypertension 35: 38–42

    Article  CAS  PubMed  Google Scholar 

  122. Gros R et al. (2006) The impact of blunted beta-adrenergic responsiveness on growth regulatory pathways in hypertension. Mol Pharmacol 69: 317–327

    CAS  PubMed  Google Scholar 

  123. Eckhart AD et al. (2002) Vascular-targeted overexpression of G protein-coupled receptor kinase-2 in transgenic mice attenuates beta-adrenergic receptor signaling and increases resting blood pressure. Mol Pharmacol 61: 749–758

    Article  CAS  PubMed  Google Scholar 

  124. Keys JR et al. (2005) Vascular smooth muscle overexpression of G protein-coupled receptor kinase 5 elevates blood pressure, which segregates with sex and is dependent on Gi-mediated signaling. Circulation 112: 1145–1153

    Article  CAS  PubMed  Google Scholar 

  125. Ishizaka N et al. (1997) G protein-coupled receptor kinase 5 in cultured vascular smooth muscle cells and rat aorta: regulation by angiotensin II and hypertension. J Biol Chem 272: 32482–32488

    Article  CAS  PubMed  Google Scholar 

  126. Premont RT et al. (1996) Characterization of the G protein-coupled receptor kinase GRK4: identification of four splice variants. J Biol Chem 271: 6403–6410

    Article  CAS  PubMed  Google Scholar 

  127. Gainetdinov RR et al. (2003) Dopaminergic supersensitivity in G protein-coupled receptor kinase 6-deficient mice. Neuron 38: 291–303

    Article  CAS  PubMed  Google Scholar 

  128. Zhu H et al. (2006) The G protein-coupled receptor kinase 4 gene affects blood pressure in young normotensive twins. Am J Hypertens 19: 61–66

    Article  CAS  PubMed  Google Scholar 

  129. Watanabe H et al. (2002) Desensitization of human renal D1 dopamine receptors by G protein-coupled receptor kinase 4. Kidney Int 62: 790–798

    Article  CAS  PubMed  Google Scholar 

  130. Tobin AB (2002) Are we β-ARKing up the wrong tree? Casein kinase 1 alpha provides an additional pathway for GPCR phosphorylation. Trends Pharmacol Sci 23: 337–343

    Article  CAS  PubMed  Google Scholar 

  131. Oppermann M et al. (1996) Monoclonal antibodies reveal receptor specificity among G-protein-coupled receptor kinases. Proc Natl Acad Sci USA 93: 7649–7654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Iacovelli L et al. (1999) Regulation of G-protein-coupled receptor kinase subtypes by calcium sensor proteins. FASEB J 13: 1–8

    Article  CAS  PubMed  Google Scholar 

  133. Casari G et al. (1995) Association of the alpha-adducin locus with essential hypertension. Hypertension 25: 320–326

    Article  CAS  PubMed  Google Scholar 

  134. Chen W et al. (2005) Autosomal genome scan for loci linked to blood pressure levels and trends since childhood: the Bogalusa Heart Study. Hypertension 45: 954–959

    Article  CAS  PubMed  Google Scholar 

  135. Province MA et al. (2000) Association between the alpha-adducin gene and hypertension in the HyperGEN Study. Am J Hypertens 13: 710–718

    Article  CAS  PubMed  Google Scholar 

  136. Hollon TR et al. (2002) Mice lacking D5 dopamine receptors have increased sympathetic tone and are hypertensive. J Neurosci 22: 10801–10810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zeng C et al. (2004) Functional genomics of the dopaminergic system in hypertension. Physiol Genomics 19: 233–246

    Article  CAS  PubMed  Google Scholar 

  138. Wang Z et al. (2005) AT1 receptors and hypertension in human gamma A142V transgenic mice [abstract #139]. Am J Hypertens 18

  139. Gardner B et al. (2001) The role of phosphorylation/dephosphorylation in agonist-induced desensitization of D1 dopamine receptor function: evidence for a novel pathway for receptor dephosphorylation. Mol Pharmacol 59: 310–321

    Article  CAS  PubMed  Google Scholar 

  140. Efendiev R et al. (2002) Relevance of dopamine signals anchoring dynamin-2 to the plasma membrane during Na+,K+-ATPase endocytosis. J Biol Chem 277: 44108–44114

    Article  CAS  PubMed  Google Scholar 

  141. Yu P et al. (2000) Renal protein phosphatase 2A activity and spontaneous hypertension in rats. Hypertension 36: 1053–1058

    Article  CAS  PubMed  Google Scholar 

  142. Adlersberg M et al. (2004) Regulation of dopamine D-receptor activation in vivo by protein phosphatase 2B (calcineurin). J Neurochem 90: 865–873

    Article  CAS  PubMed  Google Scholar 

  143. Aperia A et al. (1991) Phosphorylated Mr 32,000 dopamine- and cAMP-regulated phosphoprotein inhibits Na+,K+-ATPase activity in renal tubule cells. Proc Natl Acad Sci USA 88: 2798–2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Slobodyansky E et al. (1995) Dopamine and protein phosphatase activity in renal proximal tubules. Am J Physiol 268: F279–F284

    CAS  PubMed  Google Scholar 

  145. Wang Z et al. (2003) Human GRK4 A486V polymorphism causes salt sensitive hypertension in transgenic mice [abstract #362]. J Am Soc Nephrol 14

  146. Sanada H et al. (2006) Amelioration of genetic hypertension by suppression of renal G protein-coupled receptor kinase type 4 expression. Hypertension 47: 1131–1139

    Article  CAS  PubMed  Google Scholar 

  147. Bengra C et al. (2002) Genotyping of essential hypertension single-nucleotide polymorphisms by a homogeneous PCR method with universal energy transfer primers. Clin Chem 48: 2131–2140

    CAS  PubMed  Google Scholar 

  148. Speirs HJ et al. (2004) Association of G-protein-coupled receptor kinase 4 haplotypes, but not HSD3B1 or PTP1B polymorphisms, with essential hypertension. J Hypertens 22: 931–936

    Article  CAS  PubMed  Google Scholar 

  149. Gu D et al. (2006) Association study with 33 single-nucleotide polymorphisms in 11 candidate genes for hypertension in Chinese. Hypertension 47: 1147–1154

    Article  CAS  PubMed  Google Scholar 

  150. Sanada H et al. (2006) Single-nucleotide polymorphisms for diagnosis of salt-sensitive hypertension. Clin Chem 52: 352–360

    Article  CAS  PubMed  Google Scholar 

  151. Williams SM et al. (2004) Multilocus analysis of hypertension: a hierarchical approach. Hum Hered 57: 28–38

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A Thompson for her assistance with preparing the manuscript. This work was supported by grant numbers PG-00127-2004.R1, HL23081, DK39308, HL68686, DK52612, and HL074940.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin A Felder.

Ethics declarations

Competing interests

The use of polymorphisms in GRK4 for the diagnosis and treatment of essential hypertension and salt sensitivity has resulted in a patent entitled 'G Protein-Related Kinase' (#6,660,474, 12.09.03) that has been assigned to Hypogen, Inc., Charlottesville, VA, a company in which the authors hold the majority share of the equity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felder, R., Jose, P. Mechanisms of Disease: the role of GRK4 in the etiology of essential hypertension and salt sensitivity. Nat Rev Nephrol 2, 637–650 (2006). https://doi.org/10.1038/ncpneph0301

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0301

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing