Discussion
In the present study, we assessed the associations between changes in total consumption of nuts, intakes of specific types of nuts and weight change during more than 20 years of follow-up in US men and women from three prospective cohort studies. Increased total consumption of nuts and any type of nuts (including peanuts) was associated with less long-term weight gain and lower risk of developing obesity. The present study provides evidence to support current dietary guidelines that emphasise the importance of incorporating nuts as part of a healthy dietary pattern in the primary prevention of gradual long-term weight gain and obesity.
A number of cross-sectional studies and prospective cohort studies20–22 have demonstrated consistent inverse associations between higher nut consumption and BMI, and body weight.8 23 Our long-term follow-up data with repeated measures from three cohorts are in line with prior observations, including a prior analysis of NHS II data which showed individuals who consumed nuts ≥2 times/week had slightly less weight gain than those who rarely ate nuts during 8 years of follow-up.23 Another study reported that each serving/day of nut intake was associated with 0.26 kg (0.57 lb) less weight gain over 4 years in non-obese individuals from the HPFS, NHS and NHS II.18 In a European cohort, individuals in the highest quartile of nut intake had less weight gain (−0.07 kg, 95% CI −0.12 to −0.02) and had a lower risk of becoming overweight or obese over 5 years when compared with non-consumers.24 Our findings provide further support to existing evidence by demonstrating that increasing the total consumption of nuts, by 0.5 servings/day, was associated with a lower risk of moderate weight gain and a lower risk of developing obesity. The magnitude of inverse associations with obesity risk was similar between specific types of nuts.
In the present analysis, we did not exclude participants with obesity from the analysis of weight change, as was done in the previous study. Elimination of obese participants may lead to underestimating the effect of diet on weight change, as people with obesity are more susceptible to changes in dietary quality and the obesogenic environment. In addition, ~40% of the US population is obese, warranting research in this high risk group that stands to benefit from adopting a healthy dietary pattern. Because weight change occurs gradually at the population level, our 4-year assessment period is aligned with the long-term time course of weight change in response to a change in diet. We modelled the concurrent changes in the intakes of nuts and weight change over a 4-year period, which approximates to an intervention study when changes in other lifestyle factors are also taken into account.
The mechanisms underlying our observed associations between increasing nut intake and lower risks of weight gain are multipronged. Nuts require considerable oral processing effort. The mastication of chewing may elicit dietary compensation through a reduced rate of ingestion.25 The high fibre content of nuts can delay gastric emptying,25 increase satiety,26 27 suppress hunger and the desire to eat, and promote fullness.28 The fibre in nuts also provides a greater binding of fatty acids in the gut, leading to greater calorie fecal excretion.29 A number of studies have examined the efficiency of energy absorption from nuts and have shown that consumption of varying types of nuts resulted in substantive increases in fecal energy loss ranging from 5% to >20%.30–32 There is evidence that the high unsaturated fat composition of nuts elevates fatty acid oxidation and increases thermogenesis33 and resting energy expenditure,34 which may also contribute to the mitigation of weight gain.
Even modest weight gain of ≥2.5 kg from early to middle adulthood (18–55 years) is significantly associated with increased risk of obesity-related cardiovascular disease and type 2 diabetes, compared with those who maintain a stable body weight.3 35 In our study, on average, participants gained 0.32 kg per year. Increasing total nut intake by 0.5 servings/day was associated with less weight gain of 0.19 kg, suggesting that incorporating nuts into the diet, even given their calorie content, is helpful in mitigating a portion of long-term gradual weight gain. In addition, our findings suggest that replacing snacks with nuts could potentially provide long-term beneficial effects in weight management and associated cardiometabolic benefits at the population level. These findings also underscore the importance of diet quality for weight gain prevention.18 While the average diet quality of the US population has improved in recent decades, it remains suboptimal.36 Part of the improvement of the diet quality can be attributed to the increased intake of nuts.4 The average consumption of nuts was 0.47 servings/day for men from HPFS in 2010, and 0.31 servings/day for women from NHS in 2010 and NHS II in 2011 (figure S1), which is half the amount recommended by the American Heart Association for the improvement of cardiovascular health (3–4 servings/week for 1600 kcal, 4–5 servings/week for 2000 kcals, ~0.6 servings/day), indicating room for improvement.37 Even a small increase in nut consumption is preventive of weight gain. In our cohort, an increase in intakes of different types of nuts and peanuts, by one serving/week (equivalent to 0.14 servings/day) was associated with less weight gain (ranging from −0.03 kg to −0.10 kg). Nuts are often consumed as snacks and as such could potentially improve diet quality by replacing other snacks high in saturated fat, sodium and added sugar.38 Substituting snacks such as chips (crisps) and desserts with any type of nut therefore offers a realistic and attainable dietary modification for long-term weight management. In addition to the impact on human health, using environmentally friendly plant-based protein, such as nuts and seeds, to replace animal sources of protein may contribute to the promotion of a global sustainable food system.39
Our study has several strengths. The large sample size including both sexes with high follow-up rate and long duration of the follow-up enabled us to evaluate subtle changes of gradual weight gain. The repeated prospective measures of diet and weight reduced potential biases due to reverse causation9 and the analyses on concurrent changes provided more robust, consistent and biologically plausible associations by simulating a dietary intervention study.
Several potential limitations should be considered. First, although we adjusted for parallel changes in many dietary and lifestyle factors, residual confounding cannot be completely ruled out. It is possible that other lifestyle and dietary changes accompanied the decision to change nut intakes. However, adjustment for correlated dietary factors including fruit, vegetables and further adjusted for AHEI without nuts and alcohol (online supplementary table S1) did not appreciably alter the results. Second, nut intake was self-reported and measurement error in self-reported diet is possible. However, our previous validation studies in a subsample of participants showed a reasonable degree of correlation between our FFQ questionnaire and multiple dietary records for nut intake. Bias due to reverse causation cannot be completely eliminated, such that perceived changes in body weight may lead to changes in diet, rather than the opposite temporal direction that we hypothesise. Finally, our cohorts largely consisted of Caucasian health professionals with relatively higher socioeconomic status, and thus the results may not be generalisable to other groups. Because of the lack of data on how nuts were prepared (ie, salted, raw, roasted), we were limited to examining the influence of preparation methods.