Introduction
Humans are an amalgamation of both ‘self’ material and a plethora of ‘non-self’ microorganisms, termed microbiota. These two entities are interactive, and their symbiotic co-existence is crucial for maintaining health.
An ecosystem of microbiota is collectively known as a microbiome. One such example exists within the human gastrointestinal tract (GIT). A highly developed bidirectional relationship exists between the central nervous system (CNS) and the GIT (including the microbiota colonising the GIT), with each area seemingly capable of influencing the condition and functionality of the other. This relationship is termed the gut–brain axis (GBA).1–4 The potential effects of the GBA on physiology and pathophysiology are too vast to be covered in one review. Therefore, in light of the current mental health crisis, we have chosen to focus on the GBA’s relationship with ‘common mental disorder’ (CMD).
It is theorised that the behaviours, cognitive capacities and even the emotions of an individual may not be determined entirely by their nervous system, but also by the colonising GIT microbiota. The mechanistic details underpinning the GBA are complex and yet to be fully elucidated. However, it has already been identified that crucial to facilitating this interaction are: immunomodulatory mechanisms; afferent and efferent neuronal signalling afforded by the vagal nerve; and bidirectional enteroendocrine signalling.2 5
Many factors influence the GIT microbiome, from the mode of delivery at birth to genetic and epigenetic variables. One of the most significant influences is diet.4 Foods containing microbiota thought to exert a positive influence on an individual’s GIT microbiome are termed probiotics, and food types that promote the growth or flourishing of these bacteria are termed prebiotics.4 5 The growing appreciation of the interconnectedness between the GIT microbiome and the nervous system, combined with the knowledge that pre/probiotics can alter the condition and constitution of the GIT microbiome, has highlighted pre/probiotics as potentially therapeutically valuable agents in the treatment of certain psychiatric conditions.6 Among the conditions being investigated are anxiety disorders and depression. The extent to which pre/probiotics might be therapeutically useful (or even viable) in treating anxiety and/or depression is presently unknown, which provides a reasonable rationale for exploring their potential value. To better understand this, we will contemplate some of the mechanisms already identified as key for GBA interactions alongside existing experimental findings.
GBA mechanisms
The vagus nerve
The immune system is crucial in mediating the GBA interactions.1 2 7 At least two mechanisms for this have been described. Experimental findings suggest the vagus nerve is integral in mediating GBA interactions.8 Components of microbiota recognised as non-self provoke cells of the innate immune system to release pro-inflammatory cytokines. The presence of pro-inflammatory cytokines influences neuronal physiology via vagal nerve stimulation.5 9 Numerous animal studies support this and indicate that microbiota-induced effects on neuronal physiology can affect behaviour. For example, mice that were administered Bifidobactium longum to induce gut dysbiosis exhibited anxiolytic effects compared with control subjects; subsequent vagotomy blocked this effect.10
Signalling molecules
Neuronal biochemistry can also be affected by direct action of cytokines that cross the blood–brain barrier (BBB).9 Cytokines are produced when GIT microbiota or their metabolites gain access to the systemic circulation.11–13 This process is thought to be part of the pathophysiology of multiple medical conditions. For example, patients with depression show increased GIT permeability, which may enable luminal microbiota to enter systemic circulation and trigger pro-inflammatory states.12–14 Certain microorganisms are associated with such effects, while others appear to oppose these actions. Various lactobacilli and bifidobacteria strains—typically commensal within healthy human GIT microbiomes—have been shown to attenuate the presence of pro-inflammatory cytokines within he systematic circulation when administered as probiotic supplements.2 9 15 Contrastingly, other microbiota have been shown to exert the opposite effect. This may be significant, given that neuroinflammation has been identified as being key in the pathogenesis of multiple psychiatric conditions including both anxiety disorder and major depressive disorders (MDDs).9–14
Cross-talk
There is evidence indicating GIT microbiota affect the functioning of luminal GIT cells, which may affect host behaviour via endocrinal signalling. Microbial metabolites, such as short chain fatty acid (SCFA), are thought to have this effect.3 Certain commensals produce SCFAs by fermenting non-digestible dietary carbohydrates, like dietary fibre, as part of their natural physiology (fermentable compounds such as these are examples of prebiotics).2 5 SCFAs directly affect enteroendocrine cells within the GIT, triggering the release of various compounds including cholecystokinin and glucagon-like peptide 1. These compounds are endocrinologically active, and may induce changes in host physiology and behaviour—such as triggering satiety.3 Microbiota–host interactions of this nature are termed ‘cross-talk’.
Numerous compounds have been identified as potentially capable of influencing host behaviour by cross-talk. Tryptophan (TRP), a precursor of the neurotransmitter serotonin, is one such example.16 It is possible that cross-talk mechanisms may form part of the pathophysiology of anxiety disorders and/or depression, which highlights them as potentially utilisable therapeutic avenues for treating these conditions.11 16 Finally, it must be highlighted that the mechanisms by which GBA interactions are enacted suggest that the effects microbiota have on their host physiologically, or during pathophysiological states, may be detectable within the host’s biochemical profile. As such, it may prove useful to consider any effects that pre/probiotics have in humans through biochemical analysis, in addition to considering the global state of an individual subjectively and objectively.
Psychiatric disorders in society
The mechanisms and findings outlined provide a succinct tour of some of the information GBA studies have produced. Collectively, they indicate the necessity for further investigation; however, what they neglect to highlight is the importance that such research might hold within the context of clinical practice—particularly with regard to anxiety and depression. According to 2014 UK governmental statistics, 17% of people report experiencing the effects of a CMD weekly.17 CMD encompasses multiple conditions. Of these, anxiety disorders and depression are, respectively, the first and second largest contributors to this figure, comprising >9%. This review will focus on depression and anxiety as their symptoms are easier to quantify than other CMDs, yet still represent a significant proportion of CMDs as a whole. The prevalence of CMDs has consistently increased in adults, irrespective of age and gender, since 1993. In 2016/17, 1.4 million patients were referred with a clinical diagnosis of a CMD, 53% with a diagnosis of an anxiety or stress-related disorder and 33% with depression. The UK has a target for 50% of patients referred for anxiety disorder and depression—who complete treatment—to shift from a clinically recognised condition to a subclinical state. This target has not been met.17
These figures are included not to suggest that the treatment of anxiety and/or depression is failing, but to highlight the difficulty in treating such conditions. Our collective understanding of psychiatric disorders (and, broadly speaking, of mental health) is still developing, meaning it is vital to ensure our clinical approaches are multifaceted and evolving. The nascent field of ‘nutritional psychology’ could offer a way to enhance the efficacy of current treatments and/or provide novel treatments.
Recent reviews exploring pre/probiotic supplementation in other psychiatric disorders yielded null conclusions. However, this could be as a result of the heterogeneity of the studies included.18 19 Whether pre/probiotics are useful agents in the treatment of CMDs remains to be determined, though the pressing need for alternative treatment options, combined with the underlying scientific rationale supporting their potential efficacy, is reason enough to explore their worth further.